开关顺序对功率双极半导体器件零电流开关性能的影响

R. Vijayalakshmi, M. Trivedi, K. Shenai
{"title":"开关顺序对功率双极半导体器件零电流开关性能的影响","authors":"R. Vijayalakshmi, M. Trivedi, K. Shenai","doi":"10.1109/APEC.2000.822826","DOIUrl":null,"url":null,"abstract":"Bipolar devices significantly differ in their performance and behaviour in any given application. The knowledge of their behavior in order to design both devices and circuits that would allow less switching losses is essential. In this paper, a distinct and interesting phenomenon in the charge dynamics of BJTs and IGBTs under ZCS operation is reported. It is shown that the difference in charge dynamics results in contradicting switching sequence requirements between BJTs and IGBTs. It is shown, with the help of two-dimensional device-circuit simulations, that in IGBTs, a majority of excess carriers are flushed out during the no-current regime while in the case of the BJT, most of carriers are removed by recombination after the device is turned off. In order to use the semiconductor switch optimally, IGBT turn-off should be delayed as much as possible, while, in the case of a BJT, the switch needs to be turned off as soon as possible after the zero-current condition is established. A careful choice of switching sequence is shown to result in a reduction in switching power loss by a factor of 2 in the case of the BJT and a factor of 3 in the case of the IGBT.","PeriodicalId":347959,"journal":{"name":"APEC 2000. Fifteenth Annual IEEE Applied Power Electronics Conference and Exposition (Cat. No.00CH37058)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of switching sequence on zero current switching performance of power bipolar semiconductor devices\",\"authors\":\"R. Vijayalakshmi, M. Trivedi, K. Shenai\",\"doi\":\"10.1109/APEC.2000.822826\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bipolar devices significantly differ in their performance and behaviour in any given application. The knowledge of their behavior in order to design both devices and circuits that would allow less switching losses is essential. In this paper, a distinct and interesting phenomenon in the charge dynamics of BJTs and IGBTs under ZCS operation is reported. It is shown that the difference in charge dynamics results in contradicting switching sequence requirements between BJTs and IGBTs. It is shown, with the help of two-dimensional device-circuit simulations, that in IGBTs, a majority of excess carriers are flushed out during the no-current regime while in the case of the BJT, most of carriers are removed by recombination after the device is turned off. In order to use the semiconductor switch optimally, IGBT turn-off should be delayed as much as possible, while, in the case of a BJT, the switch needs to be turned off as soon as possible after the zero-current condition is established. A careful choice of switching sequence is shown to result in a reduction in switching power loss by a factor of 2 in the case of the BJT and a factor of 3 in the case of the IGBT.\",\"PeriodicalId\":347959,\"journal\":{\"name\":\"APEC 2000. Fifteenth Annual IEEE Applied Power Electronics Conference and Exposition (Cat. No.00CH37058)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"APEC 2000. Fifteenth Annual IEEE Applied Power Electronics Conference and Exposition (Cat. No.00CH37058)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APEC.2000.822826\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"APEC 2000. Fifteenth Annual IEEE Applied Power Electronics Conference and Exposition (Cat. No.00CH37058)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APEC.2000.822826","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

双极器件在任何给定应用中的性能和行为都有显著差异。为了设计允许更少开关损耗的器件和电路,了解它们的行为是必不可少的。本文报道了在ZCS操作下bjt和igbt的电荷动力学中一个独特而有趣的现象。结果表明,电荷动力学的差异导致bjt和igbt之间的开关顺序要求不同。在二维器件电路模拟的帮助下,结果表明,在igbt中,大多数多余的载流子在无电流状态下被排出,而在BJT的情况下,大多数载流子在器件关闭后通过重组被去除。为了最佳地使用半导体开关,IGBT关断应尽可能延迟,而对于BJT,则需要在零电流条件建立后尽快关断开关。仔细选择开关顺序可以使开关功率损耗在BJT的情况下降低2倍,在IGBT的情况下降低3倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Impact of switching sequence on zero current switching performance of power bipolar semiconductor devices
Bipolar devices significantly differ in their performance and behaviour in any given application. The knowledge of their behavior in order to design both devices and circuits that would allow less switching losses is essential. In this paper, a distinct and interesting phenomenon in the charge dynamics of BJTs and IGBTs under ZCS operation is reported. It is shown that the difference in charge dynamics results in contradicting switching sequence requirements between BJTs and IGBTs. It is shown, with the help of two-dimensional device-circuit simulations, that in IGBTs, a majority of excess carriers are flushed out during the no-current regime while in the case of the BJT, most of carriers are removed by recombination after the device is turned off. In order to use the semiconductor switch optimally, IGBT turn-off should be delayed as much as possible, while, in the case of a BJT, the switch needs to be turned off as soon as possible after the zero-current condition is established. A careful choice of switching sequence is shown to result in a reduction in switching power loss by a factor of 2 in the case of the BJT and a factor of 3 in the case of the IGBT.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信