Johannes Coetzer, Jacques P. Swanepoel, R. Sabourin
{"title":"人与机器决策的动态融合,实现高效、成本敏感的生物识别认证","authors":"Johannes Coetzer, Jacques P. Swanepoel, R. Sabourin","doi":"10.1109/SAUPEC/RobMech/PRASA48453.2020.9040973","DOIUrl":null,"url":null,"abstract":"Despite growing interest in human-machine collaboration for enhanced decision-making, little work has been done on the optimal fusion of human and machine decisions for cost-sensitive biometric authentication. An elegant and robust protocol for achieving this objective is proposed. The merits of the protocol is illustrated by simulating a scenario where a workforce of human experts and a score-generating machine are available for the authentication of handwritten signatures on, for example, bank cheques. The authentication of each transaction is determined by its monetary value and the quality of the claimed author's signature. A database with 765 signatures is considered, and an experiment that involves 24 human volunteers and two different machines is conducted. When a reasonable number of experts are kept in the loop, the average expected cost associated with the workforce-machine hybrid is invariably lower than that of the unaided workforce and that of the unaided machine.","PeriodicalId":215514,"journal":{"name":"2020 International SAUPEC/RobMech/PRASA Conference","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic fusion of human and machine decisions for efficient cost-sensitive biometric authentication\",\"authors\":\"Johannes Coetzer, Jacques P. Swanepoel, R. Sabourin\",\"doi\":\"10.1109/SAUPEC/RobMech/PRASA48453.2020.9040973\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Despite growing interest in human-machine collaboration for enhanced decision-making, little work has been done on the optimal fusion of human and machine decisions for cost-sensitive biometric authentication. An elegant and robust protocol for achieving this objective is proposed. The merits of the protocol is illustrated by simulating a scenario where a workforce of human experts and a score-generating machine are available for the authentication of handwritten signatures on, for example, bank cheques. The authentication of each transaction is determined by its monetary value and the quality of the claimed author's signature. A database with 765 signatures is considered, and an experiment that involves 24 human volunteers and two different machines is conducted. When a reasonable number of experts are kept in the loop, the average expected cost associated with the workforce-machine hybrid is invariably lower than that of the unaided workforce and that of the unaided machine.\",\"PeriodicalId\":215514,\"journal\":{\"name\":\"2020 International SAUPEC/RobMech/PRASA Conference\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International SAUPEC/RobMech/PRASA Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SAUPEC/RobMech/PRASA48453.2020.9040973\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International SAUPEC/RobMech/PRASA Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAUPEC/RobMech/PRASA48453.2020.9040973","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Dynamic fusion of human and machine decisions for efficient cost-sensitive biometric authentication
Despite growing interest in human-machine collaboration for enhanced decision-making, little work has been done on the optimal fusion of human and machine decisions for cost-sensitive biometric authentication. An elegant and robust protocol for achieving this objective is proposed. The merits of the protocol is illustrated by simulating a scenario where a workforce of human experts and a score-generating machine are available for the authentication of handwritten signatures on, for example, bank cheques. The authentication of each transaction is determined by its monetary value and the quality of the claimed author's signature. A database with 765 signatures is considered, and an experiment that involves 24 human volunteers and two different machines is conducted. When a reasonable number of experts are kept in the loop, the average expected cost associated with the workforce-machine hybrid is invariably lower than that of the unaided workforce and that of the unaided machine.