深度惯性定位的可学习时空地图嵌入

Dennis Melamed, Karnik Ram, Vivek Roy, Kris Kitani
{"title":"深度惯性定位的可学习时空地图嵌入","authors":"Dennis Melamed, Karnik Ram, Vivek Roy, Kris Kitani","doi":"10.1109/IROS47612.2022.9981092","DOIUrl":null,"url":null,"abstract":"Indoor localization systems often fuse inertial odometry with map information via hand-defined methods to reduce odometry drift, but such methods are sensitive to noise and struggle to generalize across odometry sources. To address the robustness problem in map utilization, we propose a data-driven prior on possible user locations in a map by combining learned spatial map embeddings and temporal odometry embeddings. Our prior learns to encode which map regions are feasible locations for a user more accurately than previous hand-defined methods. This prior leads to a 49% improvement in inertial-only localization accuracy when used in a particle filter. This result is significant, as it shows that our relative positioning method can match the performance of absolute positioning using bluetooth beacons. To show the gen-eralizability of our method, we also show similar improvements using wheel encoder odometry. Our code will be made publicly available†1project page: https://rebrand.ly/learned-map-prior.","PeriodicalId":431373,"journal":{"name":"2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Learnable Spatio-Temporal Map Embeddings for Deep Inertial Localization\",\"authors\":\"Dennis Melamed, Karnik Ram, Vivek Roy, Kris Kitani\",\"doi\":\"10.1109/IROS47612.2022.9981092\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Indoor localization systems often fuse inertial odometry with map information via hand-defined methods to reduce odometry drift, but such methods are sensitive to noise and struggle to generalize across odometry sources. To address the robustness problem in map utilization, we propose a data-driven prior on possible user locations in a map by combining learned spatial map embeddings and temporal odometry embeddings. Our prior learns to encode which map regions are feasible locations for a user more accurately than previous hand-defined methods. This prior leads to a 49% improvement in inertial-only localization accuracy when used in a particle filter. This result is significant, as it shows that our relative positioning method can match the performance of absolute positioning using bluetooth beacons. To show the gen-eralizability of our method, we also show similar improvements using wheel encoder odometry. Our code will be made publicly available†1project page: https://rebrand.ly/learned-map-prior.\",\"PeriodicalId\":431373,\"journal\":{\"name\":\"2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IROS47612.2022.9981092\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS47612.2022.9981092","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

室内定位系统通常通过手工定义的方法将惯性里程计与地图信息融合在一起,以减少里程计漂移,但这种方法对噪声很敏感,并且难以在里程计源之间进行推广。为了解决地图利用中的鲁棒性问题,我们通过结合学习的空间地图嵌入和时间里程嵌入,提出了一种数据驱动的地图中可能用户位置的先验。我们的先验学习编码哪些地图区域对用户来说是可行的位置,比以前手工定义的方法更准确。当在粒子滤波器中使用时,这种先验导致仅惯性定位精度提高49%。这一结果具有重要意义,表明我们的相对定位方法可以达到蓝牙信标绝对定位的性能。为了证明我们方法的通用性,我们还展示了使用轮式编码器里程计的类似改进。我们的代码将公开提供†1项目页面:https://rebrand.ly/learned-map-prior。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learnable Spatio-Temporal Map Embeddings for Deep Inertial Localization
Indoor localization systems often fuse inertial odometry with map information via hand-defined methods to reduce odometry drift, but such methods are sensitive to noise and struggle to generalize across odometry sources. To address the robustness problem in map utilization, we propose a data-driven prior on possible user locations in a map by combining learned spatial map embeddings and temporal odometry embeddings. Our prior learns to encode which map regions are feasible locations for a user more accurately than previous hand-defined methods. This prior leads to a 49% improvement in inertial-only localization accuracy when used in a particle filter. This result is significant, as it shows that our relative positioning method can match the performance of absolute positioning using bluetooth beacons. To show the gen-eralizability of our method, we also show similar improvements using wheel encoder odometry. Our code will be made publicly available†1project page: https://rebrand.ly/learned-map-prior.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信