网络犯罪分析:在微博帖子中检测和预测犯罪活动的文本挖掘技术

Salim Alami, O. Beqqali
{"title":"网络犯罪分析:在微博帖子中检测和预测犯罪活动的文本挖掘技术","authors":"Salim Alami, O. Beqqali","doi":"10.1109/SITA.2015.7358435","DOIUrl":null,"url":null,"abstract":"The exponential development in online social media allows users around the globe the possibility to share and communicate information and ideas freely in different formats of data via internet. This emerging media has become a dominant communication tool and it has been used as a communication channel in several events, especially “The Arab Spring” and BOSTON'S attack etc. In order to develop useful profiles of different cybercriminals, text mining techniques is an effective way to detect and predict criminal activities in microblog posts taking account the problems of data sparseness and semantic gap. The hashtags used on Twitter (e.g., #arabspring, #BostonAttack) contains outstanding indicators to detect events and trending topics especially to target and detect suspicious topics and eventual illegal events. Similarity approach is used in text analysis to detect suspicious posts in microblog publications. The evaluation of our proposed approach is done within real posts.","PeriodicalId":174405,"journal":{"name":"2015 10th International Conference on Intelligent Systems: Theories and Applications (SITA)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":"{\"title\":\"Cybercrime profiling: Text mining techniques to detect and predict criminal activities in microblog posts\",\"authors\":\"Salim Alami, O. Beqqali\",\"doi\":\"10.1109/SITA.2015.7358435\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The exponential development in online social media allows users around the globe the possibility to share and communicate information and ideas freely in different formats of data via internet. This emerging media has become a dominant communication tool and it has been used as a communication channel in several events, especially “The Arab Spring” and BOSTON'S attack etc. In order to develop useful profiles of different cybercriminals, text mining techniques is an effective way to detect and predict criminal activities in microblog posts taking account the problems of data sparseness and semantic gap. The hashtags used on Twitter (e.g., #arabspring, #BostonAttack) contains outstanding indicators to detect events and trending topics especially to target and detect suspicious topics and eventual illegal events. Similarity approach is used in text analysis to detect suspicious posts in microblog publications. The evaluation of our proposed approach is done within real posts.\",\"PeriodicalId\":174405,\"journal\":{\"name\":\"2015 10th International Conference on Intelligent Systems: Theories and Applications (SITA)\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 10th International Conference on Intelligent Systems: Theories and Applications (SITA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SITA.2015.7358435\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 10th International Conference on Intelligent Systems: Theories and Applications (SITA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SITA.2015.7358435","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

摘要

在线社交媒体的指数级发展使全球用户有可能通过互联网以不同的数据格式自由地分享和交流信息和想法。这种新兴媒体已经成为一种占主导地位的沟通工具,并在一些事件中被用作沟通渠道,特别是“阿拉伯之春”和波士顿袭击事件等。考虑到微博微博中的数据稀疏性和语义缺口问题,文本挖掘技术是一种检测和预测微博微博犯罪活动的有效方法,能够有效地提取不同类型网络犯罪分子的特征。Twitter上使用的标签(例如,#arabspring, #BostonAttack)包含出色的指标来检测事件和趋势话题,特别是针对和检测可疑话题和最终的非法事件。在文本分析中采用相似度方法检测微博出版物中的可疑帖子。对我们提议的方法的评价是在实际岗位内进行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cybercrime profiling: Text mining techniques to detect and predict criminal activities in microblog posts
The exponential development in online social media allows users around the globe the possibility to share and communicate information and ideas freely in different formats of data via internet. This emerging media has become a dominant communication tool and it has been used as a communication channel in several events, especially “The Arab Spring” and BOSTON'S attack etc. In order to develop useful profiles of different cybercriminals, text mining techniques is an effective way to detect and predict criminal activities in microblog posts taking account the problems of data sparseness and semantic gap. The hashtags used on Twitter (e.g., #arabspring, #BostonAttack) contains outstanding indicators to detect events and trending topics especially to target and detect suspicious topics and eventual illegal events. Similarity approach is used in text analysis to detect suspicious posts in microblog publications. The evaluation of our proposed approach is done within real posts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信