{"title":"最好的人字拖扫描","authors":"M. Abramovici, J. J. Kulikowski, R. Roy","doi":"10.1109/TEST.1991.519507","DOIUrl":null,"url":null,"abstract":"The full-scan and the nonscan versions of a circuit This paper presents a new algorithm for selecting the best flip-flops to scan for achieving maximum fault coverage in a partial-scan circuit. The algorithm, called PASCAL (PArtial Scan AnaLysis), ranks the flip-flops based on their contribution to the fault coverage. The results of PASCAL provide a global view of the entire partial-scan design spectrum (from no scan to full scan), and allow the designer to estimate the fault coverage achievable with any number of scanned flip-flops and to select the minimal subset of flip-flops to scan for obtaining a desired fault coverage. The number of scanned flip-flops can be reduced by taking into account faults detected by functional tests.","PeriodicalId":272630,"journal":{"name":"1991, Proceedings. International Test Conference","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"79","resultStr":"{\"title\":\"The Best Flip-Flops to Scan\",\"authors\":\"M. Abramovici, J. J. Kulikowski, R. Roy\",\"doi\":\"10.1109/TEST.1991.519507\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The full-scan and the nonscan versions of a circuit This paper presents a new algorithm for selecting the best flip-flops to scan for achieving maximum fault coverage in a partial-scan circuit. The algorithm, called PASCAL (PArtial Scan AnaLysis), ranks the flip-flops based on their contribution to the fault coverage. The results of PASCAL provide a global view of the entire partial-scan design spectrum (from no scan to full scan), and allow the designer to estimate the fault coverage achievable with any number of scanned flip-flops and to select the minimal subset of flip-flops to scan for obtaining a desired fault coverage. The number of scanned flip-flops can be reduced by taking into account faults detected by functional tests.\",\"PeriodicalId\":272630,\"journal\":{\"name\":\"1991, Proceedings. International Test Conference\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1991-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"79\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1991, Proceedings. International Test Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TEST.1991.519507\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1991, Proceedings. International Test Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TEST.1991.519507","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The full-scan and the nonscan versions of a circuit This paper presents a new algorithm for selecting the best flip-flops to scan for achieving maximum fault coverage in a partial-scan circuit. The algorithm, called PASCAL (PArtial Scan AnaLysis), ranks the flip-flops based on their contribution to the fault coverage. The results of PASCAL provide a global view of the entire partial-scan design spectrum (from no scan to full scan), and allow the designer to estimate the fault coverage achievable with any number of scanned flip-flops and to select the minimal subset of flip-flops to scan for obtaining a desired fault coverage. The number of scanned flip-flops can be reduced by taking into account faults detected by functional tests.