基于观众生理信号的视频退化主观评价值估计模型

Masaki Omata, Naho Kiriyama
{"title":"基于观众生理信号的视频退化主观评价值估计模型","authors":"Masaki Omata, Naho Kiriyama","doi":"10.14236/ewic/hci2022.23","DOIUrl":null,"url":null,"abstract":"This paper describes that it is possible to estimate a viewer ’ s five-level subjective evaluation of video degradation with an estimation accuracy of 0.90 or better by using physiological data such as blood volume pulses of viewers. To this end, we conducted an experiment to record participants ’ EEG, BVP, gaze, pupil diameter, and subjective evaluation values of video degradation while they watched videos. We then created five different datasets from the data and built estimation models using machine learning based on random forest or neural network. As a result, the coefficient of determination for the physiological data with top importance trained by random forest was 0.997. The results contribute to an objective, continuous, unconscious, and quantitative method for estimating Quality of Experience (QoE) during video viewing.","PeriodicalId":413003,"journal":{"name":"Electronic Workshops in Computing","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Model for Estimating Subjective Evaluation Values of Video Degradation from Viewers’ Physiological Signals\",\"authors\":\"Masaki Omata, Naho Kiriyama\",\"doi\":\"10.14236/ewic/hci2022.23\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes that it is possible to estimate a viewer ’ s five-level subjective evaluation of video degradation with an estimation accuracy of 0.90 or better by using physiological data such as blood volume pulses of viewers. To this end, we conducted an experiment to record participants ’ EEG, BVP, gaze, pupil diameter, and subjective evaluation values of video degradation while they watched videos. We then created five different datasets from the data and built estimation models using machine learning based on random forest or neural network. As a result, the coefficient of determination for the physiological data with top importance trained by random forest was 0.997. The results contribute to an objective, continuous, unconscious, and quantitative method for estimating Quality of Experience (QoE) during video viewing.\",\"PeriodicalId\":413003,\"journal\":{\"name\":\"Electronic Workshops in Computing\",\"volume\":\"53 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Workshops in Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14236/ewic/hci2022.23\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Workshops in Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14236/ewic/hci2022.23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文描述了利用观看者的血容量脉冲等生理数据,以0.90或更好的估计精度估计观看者对视频退化的五级主观评价。为此,我们进行了一项实验,记录了被试在观看视频时的EEG、BVP、凝视、瞳孔直径和视频退化的主观评价值。然后,我们从数据中创建了五个不同的数据集,并使用基于随机森林或神经网络的机器学习建立了估计模型。结果表明,随机森林训练的最重要生理数据的决定系数为0.997。该结果有助于在视频观看过程中评估体验质量(QoE)的客观、连续、无意识和定量方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Model for Estimating Subjective Evaluation Values of Video Degradation from Viewers’ Physiological Signals
This paper describes that it is possible to estimate a viewer ’ s five-level subjective evaluation of video degradation with an estimation accuracy of 0.90 or better by using physiological data such as blood volume pulses of viewers. To this end, we conducted an experiment to record participants ’ EEG, BVP, gaze, pupil diameter, and subjective evaluation values of video degradation while they watched videos. We then created five different datasets from the data and built estimation models using machine learning based on random forest or neural network. As a result, the coefficient of determination for the physiological data with top importance trained by random forest was 0.997. The results contribute to an objective, continuous, unconscious, and quantitative method for estimating Quality of Experience (QoE) during video viewing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信