电源伪功能试验中的噪声控制

Tengteng Zhang, D. Walker
{"title":"电源伪功能试验中的噪声控制","authors":"Tengteng Zhang, D. Walker","doi":"10.1109/VTS.2013.6548881","DOIUrl":null,"url":null,"abstract":"Pseudo functional K Longest Path Per Gate (KLPG) test (PKLPG) is proposed to generate delay tests that test the longest paths while having power supply noise similar to that seen during normal functional operation. Our experimental results show that PKLPG is more vulnerable to under-testing than traditional two-cycle transition fault test. In this work, a simulation-based X'Filling method, Bit-Flip, is proposed to maximize the power supply noise during PKLPG test. Given a set of partially-specified scan patterns, random filling is done and then an iterative procedure is invoked to flip some of the filled bits, to increase the effective weighted switching activity (WSA). Experimental results on both compacted and uncompacted test patterns are presented. The results demonstrate that our method can significantly increase effective WSA while limiting the fill rate.","PeriodicalId":138435,"journal":{"name":"2013 IEEE 31st VLSI Test Symposium (VTS)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"Power supply noise control in pseudo functional test\",\"authors\":\"Tengteng Zhang, D. Walker\",\"doi\":\"10.1109/VTS.2013.6548881\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pseudo functional K Longest Path Per Gate (KLPG) test (PKLPG) is proposed to generate delay tests that test the longest paths while having power supply noise similar to that seen during normal functional operation. Our experimental results show that PKLPG is more vulnerable to under-testing than traditional two-cycle transition fault test. In this work, a simulation-based X'Filling method, Bit-Flip, is proposed to maximize the power supply noise during PKLPG test. Given a set of partially-specified scan patterns, random filling is done and then an iterative procedure is invoked to flip some of the filled bits, to increase the effective weighted switching activity (WSA). Experimental results on both compacted and uncompacted test patterns are presented. The results demonstrate that our method can significantly increase effective WSA while limiting the fill rate.\",\"PeriodicalId\":138435,\"journal\":{\"name\":\"2013 IEEE 31st VLSI Test Symposium (VTS)\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE 31st VLSI Test Symposium (VTS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VTS.2013.6548881\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 31st VLSI Test Symposium (VTS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VTS.2013.6548881","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

摘要

伪功能K每门最长路径(KLPG)测试(plklpg)被提议生成延迟测试,在具有类似于正常功能操作时看到的电源噪声的情况下测试最长路径。实验结果表明,与传统的双周期过渡故障测试相比,plklpg更容易受到欠测试的影响。本文提出了一种基于仿真的X填充方法Bit-Flip,以最大限度地提高plklpg测试时的电源噪声。给定一组部分指定的扫描模式,进行随机填充,然后调用迭代过程来翻转一些填充的位,以增加有效加权切换活动(WSA)。给出了压实和非压实试验模式的实验结果。结果表明,该方法可以在限制填充率的同时显著提高有效WSA。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Power supply noise control in pseudo functional test
Pseudo functional K Longest Path Per Gate (KLPG) test (PKLPG) is proposed to generate delay tests that test the longest paths while having power supply noise similar to that seen during normal functional operation. Our experimental results show that PKLPG is more vulnerable to under-testing than traditional two-cycle transition fault test. In this work, a simulation-based X'Filling method, Bit-Flip, is proposed to maximize the power supply noise during PKLPG test. Given a set of partially-specified scan patterns, random filling is done and then an iterative procedure is invoked to flip some of the filled bits, to increase the effective weighted switching activity (WSA). Experimental results on both compacted and uncompacted test patterns are presented. The results demonstrate that our method can significantly increase effective WSA while limiting the fill rate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信