噪声高斯马尔可夫随机场的极大似然估计

M. Coli, L. Ippoliti
{"title":"噪声高斯马尔可夫随机场的极大似然估计","authors":"M. Coli, L. Ippoliti","doi":"10.1109/ITI.2002.1024656","DOIUrl":null,"url":null,"abstract":"In this paper we consider the issues involved in signal extraction and parameter estimation of particular spatial and spatio temporal processes observed with additive Gaussian noise. Within spatial statistics, we discuss maximum likelihood estimation of noisy auto-Gaussian models. For large lattices the estimation method can be computationally demanding thus, we present a maximum likelihood estimator which can be computed in O(n/sup 2/) steps. Spatio temporal processes are of main interest and parameter estimation of the STARG+Noise model class is also considered. The statistical properties of the proposed maximum likelihood estimator are finally explored in a simulation study.","PeriodicalId":420216,"journal":{"name":"ITI 2002. Proceedings of the 24th International Conference on Information Technology Interfaces (IEEE Cat. No.02EX534)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Maximum likelihood estimation of noisy Gaussian Markov random fields\",\"authors\":\"M. Coli, L. Ippoliti\",\"doi\":\"10.1109/ITI.2002.1024656\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we consider the issues involved in signal extraction and parameter estimation of particular spatial and spatio temporal processes observed with additive Gaussian noise. Within spatial statistics, we discuss maximum likelihood estimation of noisy auto-Gaussian models. For large lattices the estimation method can be computationally demanding thus, we present a maximum likelihood estimator which can be computed in O(n/sup 2/) steps. Spatio temporal processes are of main interest and parameter estimation of the STARG+Noise model class is also considered. The statistical properties of the proposed maximum likelihood estimator are finally explored in a simulation study.\",\"PeriodicalId\":420216,\"journal\":{\"name\":\"ITI 2002. Proceedings of the 24th International Conference on Information Technology Interfaces (IEEE Cat. No.02EX534)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ITI 2002. Proceedings of the 24th International Conference on Information Technology Interfaces (IEEE Cat. No.02EX534)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITI.2002.1024656\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ITI 2002. Proceedings of the 24th International Conference on Information Technology Interfaces (IEEE Cat. No.02EX534)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITI.2002.1024656","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文研究了加性高斯噪声下观测到的特定时空过程的信号提取和参数估计问题。在空间统计中,我们讨论了噪声自高斯模型的最大似然估计。对于大格,估计方法的计算量可能会很大,因此,我们提出了一个极大似然估计量,可以在O(n/sup 2/)步内计算。时空过程是主要的兴趣和参数估计的STARG+噪声模型类也被考虑。最后在仿真研究中探讨了所提出的极大似然估计的统计性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Maximum likelihood estimation of noisy Gaussian Markov random fields
In this paper we consider the issues involved in signal extraction and parameter estimation of particular spatial and spatio temporal processes observed with additive Gaussian noise. Within spatial statistics, we discuss maximum likelihood estimation of noisy auto-Gaussian models. For large lattices the estimation method can be computationally demanding thus, we present a maximum likelihood estimator which can be computed in O(n/sup 2/) steps. Spatio temporal processes are of main interest and parameter estimation of the STARG+Noise model class is also considered. The statistical properties of the proposed maximum likelihood estimator are finally explored in a simulation study.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信