扫描探针显微镜在半导体器件失效分析中的应用

X. Wang
{"title":"扫描探针显微镜在半导体器件失效分析中的应用","authors":"X. Wang","doi":"10.31399/asm.edfa.2020-1.p020","DOIUrl":null,"url":null,"abstract":"\n Scanning probe microscopy (SPM) is widely used for fault isolation as well as diagnosing leakage current, detecting open circuits, and characterizing doping related defects. In this article, the author presents two SPM applications that are fairly uncommon but no less important in the scope of failure analysis. The first case involves the discovery of nano-steps on the surface of high-voltage NFETs, a phenomenon associated with stress-induced crystalline shift along the (111) silicon plane. In the second case, the author uses an AFM probe in the conductive mode to correlate tunneling current distribution with hot spots in high-k gate oxide films, which is shown to be a better indicator of oxide quality than rms surface roughness.","PeriodicalId":431761,"journal":{"name":"EDFA Technical Articles","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Scanning Probe Microscopy Applications in Failure Analysis of Semiconductor Devices\",\"authors\":\"X. Wang\",\"doi\":\"10.31399/asm.edfa.2020-1.p020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Scanning probe microscopy (SPM) is widely used for fault isolation as well as diagnosing leakage current, detecting open circuits, and characterizing doping related defects. In this article, the author presents two SPM applications that are fairly uncommon but no less important in the scope of failure analysis. The first case involves the discovery of nano-steps on the surface of high-voltage NFETs, a phenomenon associated with stress-induced crystalline shift along the (111) silicon plane. In the second case, the author uses an AFM probe in the conductive mode to correlate tunneling current distribution with hot spots in high-k gate oxide films, which is shown to be a better indicator of oxide quality than rms surface roughness.\",\"PeriodicalId\":431761,\"journal\":{\"name\":\"EDFA Technical Articles\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EDFA Technical Articles\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31399/asm.edfa.2020-1.p020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EDFA Technical Articles","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31399/asm.edfa.2020-1.p020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

扫描探针显微镜(SPM)广泛用于故障隔离、漏电流诊断、开路检测和表征掺杂相关缺陷。在本文中,作者介绍了两个SPM应用程序,它们相当少见,但在故障分析范围中同样重要。第一种情况涉及在高压非场效应管表面发现纳米台阶,这种现象与沿(111)硅平面的应力诱导晶体位移有关。在第二种情况下,作者在导电模式下使用AFM探针将隧道电流分布与高k栅极氧化膜中的热点联系起来,这被证明是比rms表面粗糙度更好的氧化物质量指标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Scanning Probe Microscopy Applications in Failure Analysis of Semiconductor Devices
Scanning probe microscopy (SPM) is widely used for fault isolation as well as diagnosing leakage current, detecting open circuits, and characterizing doping related defects. In this article, the author presents two SPM applications that are fairly uncommon but no less important in the scope of failure analysis. The first case involves the discovery of nano-steps on the surface of high-voltage NFETs, a phenomenon associated with stress-induced crystalline shift along the (111) silicon plane. In the second case, the author uses an AFM probe in the conductive mode to correlate tunneling current distribution with hot spots in high-k gate oxide films, which is shown to be a better indicator of oxide quality than rms surface roughness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信