灰度图像中区域查找算法的自动参数化

S. Sergyán, L. Csink
{"title":"灰度图像中区域查找算法的自动参数化","authors":"S. Sergyán, L. Csink","doi":"10.1109/SACI.2007.375510","DOIUrl":null,"url":null,"abstract":"Selecting the right parameters is a vital issue in image processing algorithms. Normally this is done after experimenting with a limited number of pictures, and then one just hopes that the parameters will work adequately with all the other images. Experimenting with the parameters, however, consumes precious human time. In this paper we present a technique that aims at finding the right parametrization by comparing several approaches and deciding on the optimal one automatically.","PeriodicalId":138224,"journal":{"name":"2007 4th International Symposium on Applied Computational Intelligence and Informatics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Automatic Parametrization of Region Finding Algorithms in Gray Images\",\"authors\":\"S. Sergyán, L. Csink\",\"doi\":\"10.1109/SACI.2007.375510\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Selecting the right parameters is a vital issue in image processing algorithms. Normally this is done after experimenting with a limited number of pictures, and then one just hopes that the parameters will work adequately with all the other images. Experimenting with the parameters, however, consumes precious human time. In this paper we present a technique that aims at finding the right parametrization by comparing several approaches and deciding on the optimal one automatically.\",\"PeriodicalId\":138224,\"journal\":{\"name\":\"2007 4th International Symposium on Applied Computational Intelligence and Informatics\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 4th International Symposium on Applied Computational Intelligence and Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SACI.2007.375510\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 4th International Symposium on Applied Computational Intelligence and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SACI.2007.375510","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

在图像处理算法中,选择合适的参数是一个关键问题。通常情况下,这是在对有限数量的图片进行实验后完成的,然后人们只希望参数能够充分地与所有其他图像一起工作。然而,对这些参数进行实验消耗了宝贵的人力时间。在本文中,我们提出了一种技术,旨在通过比较几种方法来找到正确的参数化,并自动确定最优的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic Parametrization of Region Finding Algorithms in Gray Images
Selecting the right parameters is a vital issue in image processing algorithms. Normally this is done after experimenting with a limited number of pictures, and then one just hopes that the parameters will work adequately with all the other images. Experimenting with the parameters, however, consumes precious human time. In this paper we present a technique that aims at finding the right parametrization by comparing several approaches and deciding on the optimal one automatically.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信