在嵌入式存储器中实现无延迟ECC的工具

Thierry Bonnoit, M. Nicolaidis, N. Zergainoh
{"title":"在嵌入式存储器中实现无延迟ECC的工具","authors":"Thierry Bonnoit, M. Nicolaidis, N. Zergainoh","doi":"10.1109/ICCD.2011.6081440","DOIUrl":null,"url":null,"abstract":"The reliability of modern Integrated Circuits is affected by nanometric scaling. In many modern designs embedded memories occupy the largest part of the die and are designed as tight as allowed by the process. So they are more prone to failures than other circuits. Error correcting codes (ECC) are a convenient mean for protecting memories against failures. A major drawback of ECC is the speed penalty induced by the encoding and decoding circuits. In [5], we propose an architecture eliminating ECC delays in both read and write paths. However, this previous work does not describe a generic set of rules enabling inserting the delay-free ECC in any design. In this paper, we present the key points of an algorithm and a related tool automating its implementation.","PeriodicalId":354015,"journal":{"name":"2011 IEEE 29th International Conference on Computer Design (ICCD)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Towards a tool for implementing delay-free ECC in embedded memories\",\"authors\":\"Thierry Bonnoit, M. Nicolaidis, N. Zergainoh\",\"doi\":\"10.1109/ICCD.2011.6081440\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The reliability of modern Integrated Circuits is affected by nanometric scaling. In many modern designs embedded memories occupy the largest part of the die and are designed as tight as allowed by the process. So they are more prone to failures than other circuits. Error correcting codes (ECC) are a convenient mean for protecting memories against failures. A major drawback of ECC is the speed penalty induced by the encoding and decoding circuits. In [5], we propose an architecture eliminating ECC delays in both read and write paths. However, this previous work does not describe a generic set of rules enabling inserting the delay-free ECC in any design. In this paper, we present the key points of an algorithm and a related tool automating its implementation.\",\"PeriodicalId\":354015,\"journal\":{\"name\":\"2011 IEEE 29th International Conference on Computer Design (ICCD)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE 29th International Conference on Computer Design (ICCD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCD.2011.6081440\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 29th International Conference on Computer Design (ICCD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCD.2011.6081440","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

现代集成电路的可靠性受到纳米尺度的影响。在许多现代设计中,嵌入式存储器占据了模具的最大部分,并且在工艺允许的情况下设计得尽可能紧密。因此,它们比其他电路更容易出现故障。纠错码(ECC)是防止存储器故障的一种方便手段。ECC的一个主要缺点是由编码和解码电路引起的速度损失。在[5]中,我们提出了一种在读和写路径中消除ECC延迟的架构。然而,这之前的工作并没有描述一套通用的规则,允许在任何设计中插入无延迟的ECC。在本文中,我们给出了一个算法的关键点和自动化实现的相关工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards a tool for implementing delay-free ECC in embedded memories
The reliability of modern Integrated Circuits is affected by nanometric scaling. In many modern designs embedded memories occupy the largest part of the die and are designed as tight as allowed by the process. So they are more prone to failures than other circuits. Error correcting codes (ECC) are a convenient mean for protecting memories against failures. A major drawback of ECC is the speed penalty induced by the encoding and decoding circuits. In [5], we propose an architecture eliminating ECC delays in both read and write paths. However, this previous work does not describe a generic set of rules enabling inserting the delay-free ECC in any design. In this paper, we present the key points of an algorithm and a related tool automating its implementation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信