基于GIS的碎屑岩薄片组分分类

Bo Li, Tingshan Zhang, Liye Bai, Xiaoguang Miao
{"title":"基于GIS的碎屑岩薄片组分分类","authors":"Bo Li, Tingshan Zhang, Liye Bai, Xiaoguang Miao","doi":"10.1109/IASP.2010.5476102","DOIUrl":null,"url":null,"abstract":"The process of manual identification of thin-sections under the polarizing microscope is complex and repetitive. Geographic Information System (GIS) is a system of collecting, storing, managing, computing, analyzing, displaying and describing geospatial information. This paper proposes a way of recognizing and classifying components in clastic rock thin-sections image automatically using the spatial analysis and data management functions of GIS. The different components in clastic rock show different interference colors under orthogonal optical. According to the contrast differences between the components, we can extract the boundary of component and store it in a geodatabase through three steps including noise reduction, image segmentation and unsupervised classification. To deal with differences in size and shape of different component, we can use ISODATA(Iterative Organizing Analysis Technique) and MLC(Maximum Likelihood Classification) functions to classify and store the matrix. This paper provides a convenient tool for identifying, classifying and analyzing the thin-sections.","PeriodicalId":223866,"journal":{"name":"2010 International Conference on Image Analysis and Signal Processing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Components classification of the clastic rock thin-sections based on GIS\",\"authors\":\"Bo Li, Tingshan Zhang, Liye Bai, Xiaoguang Miao\",\"doi\":\"10.1109/IASP.2010.5476102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The process of manual identification of thin-sections under the polarizing microscope is complex and repetitive. Geographic Information System (GIS) is a system of collecting, storing, managing, computing, analyzing, displaying and describing geospatial information. This paper proposes a way of recognizing and classifying components in clastic rock thin-sections image automatically using the spatial analysis and data management functions of GIS. The different components in clastic rock show different interference colors under orthogonal optical. According to the contrast differences between the components, we can extract the boundary of component and store it in a geodatabase through three steps including noise reduction, image segmentation and unsupervised classification. To deal with differences in size and shape of different component, we can use ISODATA(Iterative Organizing Analysis Technique) and MLC(Maximum Likelihood Classification) functions to classify and store the matrix. This paper provides a convenient tool for identifying, classifying and analyzing the thin-sections.\",\"PeriodicalId\":223866,\"journal\":{\"name\":\"2010 International Conference on Image Analysis and Signal Processing\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 International Conference on Image Analysis and Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IASP.2010.5476102\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Image Analysis and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IASP.2010.5476102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

偏光显微镜下薄切片的人工鉴定过程复杂且重复。地理信息系统(GIS)是一个收集、存储、管理、计算、分析、显示和描述地理空间信息的系统。本文提出了一种利用GIS的空间分析和数据管理功能自动识别和分类碎屑岩薄片图像成分的方法。在正交光学下,碎屑岩中不同组分表现出不同的干涉色。根据构件之间的对比度差异,通过降噪、图像分割和无监督分类三个步骤提取构件的边界并存储在地理数据库中。为了处理不同组件的大小和形状的差异,我们可以使用ISODATA(迭代组织分析技术)和MLC(最大似然分类)函数对矩阵进行分类和存储。本文为薄板的识别、分类和分析提供了方便的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Components classification of the clastic rock thin-sections based on GIS
The process of manual identification of thin-sections under the polarizing microscope is complex and repetitive. Geographic Information System (GIS) is a system of collecting, storing, managing, computing, analyzing, displaying and describing geospatial information. This paper proposes a way of recognizing and classifying components in clastic rock thin-sections image automatically using the spatial analysis and data management functions of GIS. The different components in clastic rock show different interference colors under orthogonal optical. According to the contrast differences between the components, we can extract the boundary of component and store it in a geodatabase through three steps including noise reduction, image segmentation and unsupervised classification. To deal with differences in size and shape of different component, we can use ISODATA(Iterative Organizing Analysis Technique) and MLC(Maximum Likelihood Classification) functions to classify and store the matrix. This paper provides a convenient tool for identifying, classifying and analyzing the thin-sections.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信