溴介质对电解MnO2-Zn电池的促进作用

IF 9.1 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Xinhua Zheng, Yongchao Wang, Yan Xu, Touqeer Ahmad, Yuan Yuan, Jifei Sun, Ruihao Luo, Mingming Wang, Mingyan Chuai, Na Chen, Taoli Jiang, Shuang Liu, Wei Chen*
{"title":"溴介质对电解MnO2-Zn电池的促进作用","authors":"Xinhua Zheng,&nbsp;Yongchao Wang,&nbsp;Yan Xu,&nbsp;Touqeer Ahmad,&nbsp;Yuan Yuan,&nbsp;Jifei Sun,&nbsp;Ruihao Luo,&nbsp;Mingming Wang,&nbsp;Mingyan Chuai,&nbsp;Na Chen,&nbsp;Taoli Jiang,&nbsp;Shuang Liu,&nbsp;Wei Chen*","doi":"10.1021/acs.nanolett.1c03319","DOIUrl":null,"url":null,"abstract":"<p >An aqueous electrolytic MnO<sub>2</sub>–Zn battery with eye-catching Mn<sup>2+</sup>/MnO<sub>2</sub> cathode chemistry has been attracting immense interest for next-generation energy storage devices due to its irreplaceable advantages. However, the limited MnO<sub>2</sub> conductivity restricts its long service life at high areal capacities. Here, we report a high-performance electrolytic MnO<sub>2</sub>–Zn battery via a bromine redox mediator, to enhance its electrochemical performance. The MnO<sub>2</sub>/Br<sub>2</sub>–Zn battery displays a high discharge voltage of 1.98 V with a capacity of ~5.8 mAh cm<sup>–2</sup>. It also shows an excellent rate performance of 20 C with a long-term stability of over 600 cycles. Furthermore, the scaled-up MnO<sub>2</sub>/Br<sub>2</sub>–Zn battery with a capacity of ~950 mAh exhibits a stable 100 cycles with a practical cell energy density of ~32.4 Wh kg<sup>–1</sup> and an attractively low energy cost of below 15 US$ kWh<sup>–1</sup>. The design approach can be generalized to other electrodes and battery systems, thus opening up new possibilities for large-scale energy storage.</p>","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"21 20","pages":"8863–8871"},"PeriodicalIF":9.1000,"publicationDate":"2021-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":"{\"title\":\"Boosting Electrolytic MnO2–Zn Batteries by a Bromine Mediator\",\"authors\":\"Xinhua Zheng,&nbsp;Yongchao Wang,&nbsp;Yan Xu,&nbsp;Touqeer Ahmad,&nbsp;Yuan Yuan,&nbsp;Jifei Sun,&nbsp;Ruihao Luo,&nbsp;Mingming Wang,&nbsp;Mingyan Chuai,&nbsp;Na Chen,&nbsp;Taoli Jiang,&nbsp;Shuang Liu,&nbsp;Wei Chen*\",\"doi\":\"10.1021/acs.nanolett.1c03319\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >An aqueous electrolytic MnO<sub>2</sub>–Zn battery with eye-catching Mn<sup>2+</sup>/MnO<sub>2</sub> cathode chemistry has been attracting immense interest for next-generation energy storage devices due to its irreplaceable advantages. However, the limited MnO<sub>2</sub> conductivity restricts its long service life at high areal capacities. Here, we report a high-performance electrolytic MnO<sub>2</sub>–Zn battery via a bromine redox mediator, to enhance its electrochemical performance. The MnO<sub>2</sub>/Br<sub>2</sub>–Zn battery displays a high discharge voltage of 1.98 V with a capacity of ~5.8 mAh cm<sup>–2</sup>. It also shows an excellent rate performance of 20 C with a long-term stability of over 600 cycles. Furthermore, the scaled-up MnO<sub>2</sub>/Br<sub>2</sub>–Zn battery with a capacity of ~950 mAh exhibits a stable 100 cycles with a practical cell energy density of ~32.4 Wh kg<sup>–1</sup> and an attractively low energy cost of below 15 US$ kWh<sup>–1</sup>. The design approach can be generalized to other electrodes and battery systems, thus opening up new possibilities for large-scale energy storage.</p>\",\"PeriodicalId\":53,\"journal\":{\"name\":\"Nano Letters\",\"volume\":\"21 20\",\"pages\":\"8863–8871\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2021-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.nanolett.1c03319\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.nanolett.1c03319","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 30

摘要

水性电解MnO2 - zn电池具有引人注目的Mn2+/MnO2阴极化学性质,由于其不可替代的优势,已引起下一代储能设备的极大兴趣。然而,有限的MnO2电导率限制了其在高面积容量下的长使用寿命。在这里,我们报道了一种高性能的电解MnO2-Zn电池,通过溴氧化还原介质,以提高其电化学性能。MnO2/ Br2-Zn电池的放电电压高达1.98 V,容量为~5.8 mAh cm-2。它还显示了20℃的优异速率性能,具有超过600次循环的长期稳定性。此外,放大后的容量为~950 mAh的MnO2/ Br2-Zn电池表现出稳定的100次循环,实际电池能量密度为~32.4 Wh kg-1,能量成本低于15美元kWh-1。该设计方法可以推广到其他电极和电池系统,从而为大规模储能开辟了新的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Boosting Electrolytic MnO2–Zn Batteries by a Bromine Mediator

Boosting Electrolytic MnO2–Zn Batteries by a Bromine Mediator

An aqueous electrolytic MnO2–Zn battery with eye-catching Mn2+/MnO2 cathode chemistry has been attracting immense interest for next-generation energy storage devices due to its irreplaceable advantages. However, the limited MnO2 conductivity restricts its long service life at high areal capacities. Here, we report a high-performance electrolytic MnO2–Zn battery via a bromine redox mediator, to enhance its electrochemical performance. The MnO2/Br2–Zn battery displays a high discharge voltage of 1.98 V with a capacity of ~5.8 mAh cm–2. It also shows an excellent rate performance of 20 C with a long-term stability of over 600 cycles. Furthermore, the scaled-up MnO2/Br2–Zn battery with a capacity of ~950 mAh exhibits a stable 100 cycles with a practical cell energy density of ~32.4 Wh kg–1 and an attractively low energy cost of below 15 US$ kWh–1. The design approach can be generalized to other electrodes and battery systems, thus opening up new possibilities for large-scale energy storage.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信