基于深度学习的认知无线电自动调制分类

G. Mendis, Jin Wei, A. Madanayake
{"title":"基于深度学习的认知无线电自动调制分类","authors":"G. Mendis, Jin Wei, A. Madanayake","doi":"10.1109/ICCS.2016.7833571","DOIUrl":null,"url":null,"abstract":"Automated Modulation Classification (AMC) has been applied in various emerging areas such as cognitive radio (CR). In our paper, we propose a deep learning-based AMC method that employs Spectral Correlation Function (SCF). In our proposed method, one deep learning technology, Deep Belief Network (DBN), is applied for pattern recognition and classification. By using noise-resilient SCF signatures and DBN that is effective in learning complex patterns, we achieve high accuracy in modulation detection and classification even in the presence of environment noise. Our simulation results illustrate the efficiency of our proposed method in classifying 4FSK, 16QAM, BPSK, QPSK, and OFDM modulation techniques in various environments.","PeriodicalId":282352,"journal":{"name":"2016 IEEE International Conference on Communication Systems (ICCS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"120","resultStr":"{\"title\":\"Deep learning-based automated modulation classification for cognitive radio\",\"authors\":\"G. Mendis, Jin Wei, A. Madanayake\",\"doi\":\"10.1109/ICCS.2016.7833571\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automated Modulation Classification (AMC) has been applied in various emerging areas such as cognitive radio (CR). In our paper, we propose a deep learning-based AMC method that employs Spectral Correlation Function (SCF). In our proposed method, one deep learning technology, Deep Belief Network (DBN), is applied for pattern recognition and classification. By using noise-resilient SCF signatures and DBN that is effective in learning complex patterns, we achieve high accuracy in modulation detection and classification even in the presence of environment noise. Our simulation results illustrate the efficiency of our proposed method in classifying 4FSK, 16QAM, BPSK, QPSK, and OFDM modulation techniques in various environments.\",\"PeriodicalId\":282352,\"journal\":{\"name\":\"2016 IEEE International Conference on Communication Systems (ICCS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"120\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Communication Systems (ICCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCS.2016.7833571\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Communication Systems (ICCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCS.2016.7833571","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 120

摘要

自动调制分类(AMC)在认知无线电(CR)等新兴领域得到了广泛的应用。在本文中,我们提出了一种基于深度学习的基于谱相关函数(SCF)的AMC方法。在我们提出的方法中,一种深度学习技术,深度信念网络(DBN),应用于模式识别和分类。通过使用抗噪声的SCF特征和有效学习复杂模式的DBN,即使在存在环境噪声的情况下,我们也能实现高精度的调制检测和分类。我们的仿真结果证明了我们提出的方法在各种环境下对4FSK、16QAM、BPSK、QPSK和OFDM调制技术进行分类的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep learning-based automated modulation classification for cognitive radio
Automated Modulation Classification (AMC) has been applied in various emerging areas such as cognitive radio (CR). In our paper, we propose a deep learning-based AMC method that employs Spectral Correlation Function (SCF). In our proposed method, one deep learning technology, Deep Belief Network (DBN), is applied for pattern recognition and classification. By using noise-resilient SCF signatures and DBN that is effective in learning complex patterns, we achieve high accuracy in modulation detection and classification even in the presence of environment noise. Our simulation results illustrate the efficiency of our proposed method in classifying 4FSK, 16QAM, BPSK, QPSK, and OFDM modulation techniques in various environments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信