过去、现在和未来:从简历中介绍职业生涯

C. Dias, V. Guigue, P. Gallinari
{"title":"过去、现在和未来:从简历中介绍职业生涯","authors":"C. Dias, V. Guigue, P. Gallinari","doi":"10.24348/coria.2017.6","DOIUrl":null,"url":null,"abstract":"Extracting, structuring and exploiting information from freeform text is a difficult task. Learning embeddings with chosen properties and going beyond simple syntax encoding contributed to significant improvements in semantic analysis. Recently, the focus has shifted from word and document embeddings to reasoning in order to infer or predict new knowledge. In this paper, we focus on job & educational background embeddings that are learned from a large CV corpus. We aim at modeling users careers and forecasting their choices. Inspired by recent work in machine translation, we design a Recurrent Neural Network architecture to normalize job & qualification titles. Once this semantic step achieved, we build another RNN to predict position chaining in CV. MOTS-CLÉS : Apprentissage de représentations, Réseaux de neurones, Recommandation.","PeriodicalId":390974,"journal":{"name":"Conférence en Recherche d'Infomations et Applications","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Passé, présent, futurs : induction de carrières professionnelles à partir de CV\",\"authors\":\"C. Dias, V. Guigue, P. Gallinari\",\"doi\":\"10.24348/coria.2017.6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Extracting, structuring and exploiting information from freeform text is a difficult task. Learning embeddings with chosen properties and going beyond simple syntax encoding contributed to significant improvements in semantic analysis. Recently, the focus has shifted from word and document embeddings to reasoning in order to infer or predict new knowledge. In this paper, we focus on job & educational background embeddings that are learned from a large CV corpus. We aim at modeling users careers and forecasting their choices. Inspired by recent work in machine translation, we design a Recurrent Neural Network architecture to normalize job & qualification titles. Once this semantic step achieved, we build another RNN to predict position chaining in CV. MOTS-CLÉS : Apprentissage de représentations, Réseaux de neurones, Recommandation.\",\"PeriodicalId\":390974,\"journal\":{\"name\":\"Conférence en Recherche d'Infomations et Applications\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Conférence en Recherche d'Infomations et Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24348/coria.2017.6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conférence en Recherche d'Infomations et Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24348/coria.2017.6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

从自由文本中提取、构建和开发信息是一项艰巨的任务。学习带有选定属性的嵌入并超越简单的语法编码有助于显著改进语义分析。最近,焦点已经从单词和文档嵌入转移到推理,以推断或预测新知识。在本文中,我们将重点放在从大型简历语料库中学习的工作和教育背景嵌入上。我们的目标是为用户的职业生涯建模并预测他们的选择。受最近机器翻译工作的启发,我们设计了一个递归神经网络架构来规范化工作和资格头衔。一旦这个语义步骤完成,我们构建另一个RNN来预测CV中的位置链。MOTS-CLÉS:代表的学徒,神经细胞的学徒,建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Passé, présent, futurs : induction de carrières professionnelles à partir de CV
Extracting, structuring and exploiting information from freeform text is a difficult task. Learning embeddings with chosen properties and going beyond simple syntax encoding contributed to significant improvements in semantic analysis. Recently, the focus has shifted from word and document embeddings to reasoning in order to infer or predict new knowledge. In this paper, we focus on job & educational background embeddings that are learned from a large CV corpus. We aim at modeling users careers and forecasting their choices. Inspired by recent work in machine translation, we design a Recurrent Neural Network architecture to normalize job & qualification titles. Once this semantic step achieved, we build another RNN to predict position chaining in CV. MOTS-CLÉS : Apprentissage de représentations, Réseaux de neurones, Recommandation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信