用于分析端元光谱不完美的荧光标记细胞的高光谱图像的线性解混

B. Sirkeci-Mergen, M. Keralapura, Serena Coelho, S. Leavesley, T. Rich
{"title":"用于分析端元光谱不完美的荧光标记细胞的高光谱图像的线性解混","authors":"B. Sirkeci-Mergen, M. Keralapura, Serena Coelho, S. Leavesley, T. Rich","doi":"10.1109/ISBI.2013.6556440","DOIUrl":null,"url":null,"abstract":"Spectral unmixing is the method of the detecting and localizing subpixel features by estimating the relative concentrations of the reference spectra. For most applications, spectral unmixing methods should account for spectral reference ambiguity, and concentration estimates with non-negativity and sum-to-one constraints. In this paper, we propose total least squares (TLS) based methods for unmixing of hyperspectral images obtained via fluorescence microscopy. Here, we formulate the restricted TLS as a constrained quadratic optimization problem which can be solved efficiently. The performance of restricted TLS is compared to the existing least squares based methods via simulations.","PeriodicalId":178011,"journal":{"name":"2013 IEEE 10th International Symposium on Biomedical Imaging","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Linear unmixing of hyperspectral images for analysis of fluorescently-labeled cellswith imperfect endmember spectra\",\"authors\":\"B. Sirkeci-Mergen, M. Keralapura, Serena Coelho, S. Leavesley, T. Rich\",\"doi\":\"10.1109/ISBI.2013.6556440\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Spectral unmixing is the method of the detecting and localizing subpixel features by estimating the relative concentrations of the reference spectra. For most applications, spectral unmixing methods should account for spectral reference ambiguity, and concentration estimates with non-negativity and sum-to-one constraints. In this paper, we propose total least squares (TLS) based methods for unmixing of hyperspectral images obtained via fluorescence microscopy. Here, we formulate the restricted TLS as a constrained quadratic optimization problem which can be solved efficiently. The performance of restricted TLS is compared to the existing least squares based methods via simulations.\",\"PeriodicalId\":178011,\"journal\":{\"name\":\"2013 IEEE 10th International Symposium on Biomedical Imaging\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE 10th International Symposium on Biomedical Imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISBI.2013.6556440\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 10th International Symposium on Biomedical Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2013.6556440","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

光谱分解是通过估计参考光谱的相对浓度来检测和定位亚像素特征的方法。对于大多数应用,光谱解混方法应该考虑到光谱参考模糊性,以及非负性和和一约束下的浓度估计。在本文中,我们提出了基于总最小二乘(TLS)的方法来解混荧光显微镜获得的高光谱图像。在这里,我们将受限TLS表述为一个可以有效求解的受限二次优化问题。通过仿真比较了受限TLS与现有最小二乘算法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Linear unmixing of hyperspectral images for analysis of fluorescently-labeled cellswith imperfect endmember spectra
Spectral unmixing is the method of the detecting and localizing subpixel features by estimating the relative concentrations of the reference spectra. For most applications, spectral unmixing methods should account for spectral reference ambiguity, and concentration estimates with non-negativity and sum-to-one constraints. In this paper, we propose total least squares (TLS) based methods for unmixing of hyperspectral images obtained via fluorescence microscopy. Here, we formulate the restricted TLS as a constrained quadratic optimization problem which can be solved efficiently. The performance of restricted TLS is compared to the existing least squares based methods via simulations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信