为数组大小交易位宽:一个统一的可重构算术处理器设计

R. Lin
{"title":"为数组大小交易位宽:一个统一的可重构算术处理器设计","authors":"R. Lin","doi":"10.1109/ISQED.2001.915251","DOIUrl":null,"url":null,"abstract":"This paper presents a novel unified run-time reconfigurable arithmetic processor design scheme. It provides novel computational trade-offs between array/matrix size and input data item bitwidth, and efficiently performs multiple types of arithmetic operations in pipeline within a single hardware-reusable processor. The proposed computations include inner product evaluation, matrix multiplication, and evaluation of polynomial. More specifically, we show that the minimum hardware platform can be easily reconfigured to complete: [1] the inner products of two input arrays with several combinations of array dimension and precision, including input arrays of 256 4-bit items, 64 8-bit items, 16 16-bit items, 4 32-bit items and I 64-bit item; (2) the product of matrices X/sub nk/ and Y/sub km/ for any integers n, k, m and any item precision b ranging from 4 to 64 bits, including input arrays of X/sub 16/spl times/16/ Y/sub 16/spl times/16/ of 4-bit items, X/sub 8/spl times/8/ and Y/sub 8/spl times/8/ of 8-bit items, X/sub 4/spl times/4/, Y/sub 4/spl times/4/ of 16-bit items, X/sub 2/spl times/2/ and Y/sub 2/spl times/2/ of 32-bit items and the product of two 64-bit numbers; (3) the polynomial evaluations at any given point x, with several combinations of the polynomial degree N and evaluation point number precision p, including polynomial degree and item precision options of N=64, p=13, N=16, p=16, and N=4, p=32.","PeriodicalId":110117,"journal":{"name":"Proceedings of the IEEE 2001. 2nd International Symposium on Quality Electronic Design","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Trading bitwidth for array size: a unified reconfigurable arithmetic processor design\",\"authors\":\"R. Lin\",\"doi\":\"10.1109/ISQED.2001.915251\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a novel unified run-time reconfigurable arithmetic processor design scheme. It provides novel computational trade-offs between array/matrix size and input data item bitwidth, and efficiently performs multiple types of arithmetic operations in pipeline within a single hardware-reusable processor. The proposed computations include inner product evaluation, matrix multiplication, and evaluation of polynomial. More specifically, we show that the minimum hardware platform can be easily reconfigured to complete: [1] the inner products of two input arrays with several combinations of array dimension and precision, including input arrays of 256 4-bit items, 64 8-bit items, 16 16-bit items, 4 32-bit items and I 64-bit item; (2) the product of matrices X/sub nk/ and Y/sub km/ for any integers n, k, m and any item precision b ranging from 4 to 64 bits, including input arrays of X/sub 16/spl times/16/ Y/sub 16/spl times/16/ of 4-bit items, X/sub 8/spl times/8/ and Y/sub 8/spl times/8/ of 8-bit items, X/sub 4/spl times/4/, Y/sub 4/spl times/4/ of 16-bit items, X/sub 2/spl times/2/ and Y/sub 2/spl times/2/ of 32-bit items and the product of two 64-bit numbers; (3) the polynomial evaluations at any given point x, with several combinations of the polynomial degree N and evaluation point number precision p, including polynomial degree and item precision options of N=64, p=13, N=16, p=16, and N=4, p=32.\",\"PeriodicalId\":110117,\"journal\":{\"name\":\"Proceedings of the IEEE 2001. 2nd International Symposium on Quality Electronic Design\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the IEEE 2001. 2nd International Symposium on Quality Electronic Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISQED.2001.915251\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the IEEE 2001. 2nd International Symposium on Quality Electronic Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISQED.2001.915251","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

提出了一种新的统一运行时可重构算术处理器的设计方案。它在数组/矩阵大小和输入数据项位宽之间提供了新的计算权衡,并在单个硬件可重用处理器内有效地执行管道中的多种类型的算术运算。提出的计算方法包括内积求值、矩阵乘法和多项式求值。更具体地说,我们证明了最小的硬件平台可以很容易地重新配置,以完成:[1]两个具有多种数组尺寸和精度组合的输入数组的内积,包括256个4位项、64个8位项、16个16位项、4个32位项和1个64位项的输入数组;(2)对于任意整数n、k、m和4位至64位的任意项精度b,矩阵X/sub nk/和Y/sub km/的乘积,包括4位项的X/sub 16/spl times/16/ Y/sub 16/spl times/16/、8位项的X/sub 8/spl times/8/和Y/sub 8/spl times/8/、16位项的X/sub 4/spl times/4/、Y/sub 4/spl times/4/、32位项的X/sub 2/spl times/2/和Y/sub 2/spl times/2/和两个64位数的乘积的输入数组;(3)任意给定点x的多项式求值,多项式度N和求值点数精度p的几种组合,包括N=64、p=13、N=16、p=16和N=4、p=32的多项式度和项精度选项。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Trading bitwidth for array size: a unified reconfigurable arithmetic processor design
This paper presents a novel unified run-time reconfigurable arithmetic processor design scheme. It provides novel computational trade-offs between array/matrix size and input data item bitwidth, and efficiently performs multiple types of arithmetic operations in pipeline within a single hardware-reusable processor. The proposed computations include inner product evaluation, matrix multiplication, and evaluation of polynomial. More specifically, we show that the minimum hardware platform can be easily reconfigured to complete: [1] the inner products of two input arrays with several combinations of array dimension and precision, including input arrays of 256 4-bit items, 64 8-bit items, 16 16-bit items, 4 32-bit items and I 64-bit item; (2) the product of matrices X/sub nk/ and Y/sub km/ for any integers n, k, m and any item precision b ranging from 4 to 64 bits, including input arrays of X/sub 16/spl times/16/ Y/sub 16/spl times/16/ of 4-bit items, X/sub 8/spl times/8/ and Y/sub 8/spl times/8/ of 8-bit items, X/sub 4/spl times/4/, Y/sub 4/spl times/4/ of 16-bit items, X/sub 2/spl times/2/ and Y/sub 2/spl times/2/ of 32-bit items and the product of two 64-bit numbers; (3) the polynomial evaluations at any given point x, with several combinations of the polynomial degree N and evaluation point number precision p, including polynomial degree and item precision options of N=64, p=13, N=16, p=16, and N=4, p=32.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信