超声心动图的自适应分形滤波

M. Paskas, A. Gavrovska, D. Dujković, B. Reljin
{"title":"超声心动图的自适应分形滤波","authors":"M. Paskas, A. Gavrovska, D. Dujković, B. Reljin","doi":"10.1109/NEUREL.2014.7011449","DOIUrl":null,"url":null,"abstract":"Echocardiograms are inherently corrupted by the speckle noise. Elimination of the noise is usually treated with low-pass filters which can degrade edges in the image. Adaptive approaches employ masks for edges and restrict low-pass filtering mainly to homogeneous regions. Masks are based on statistical parameters or gradients. In this paper are applied local dimension matrices from fractal model as masks. Experimental tests are conducted for two simple low-pass filters (i) average filter and Gaussian filter (ii) and using three multifractal measures known from the literature - MIN, MAX and OSC measure. Obtained results for adaptive approaches show improvements over non-adaptive approaches in all analyzed scenarios.","PeriodicalId":402208,"journal":{"name":"12th Symposium on Neural Network Applications in Electrical Engineering (NEUREL)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive fractal filtering of echocardiograms\",\"authors\":\"M. Paskas, A. Gavrovska, D. Dujković, B. Reljin\",\"doi\":\"10.1109/NEUREL.2014.7011449\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Echocardiograms are inherently corrupted by the speckle noise. Elimination of the noise is usually treated with low-pass filters which can degrade edges in the image. Adaptive approaches employ masks for edges and restrict low-pass filtering mainly to homogeneous regions. Masks are based on statistical parameters or gradients. In this paper are applied local dimension matrices from fractal model as masks. Experimental tests are conducted for two simple low-pass filters (i) average filter and Gaussian filter (ii) and using three multifractal measures known from the literature - MIN, MAX and OSC measure. Obtained results for adaptive approaches show improvements over non-adaptive approaches in all analyzed scenarios.\",\"PeriodicalId\":402208,\"journal\":{\"name\":\"12th Symposium on Neural Network Applications in Electrical Engineering (NEUREL)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"12th Symposium on Neural Network Applications in Electrical Engineering (NEUREL)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NEUREL.2014.7011449\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"12th Symposium on Neural Network Applications in Electrical Engineering (NEUREL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEUREL.2014.7011449","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

超声心动图本身就被散斑噪声破坏了。噪声的消除通常用低通滤波器处理,低通滤波器可以降低图像中的边缘。自适应方法对边缘使用掩模,并将低通滤波主要限制在均匀区域。掩码基于统计参数或梯度。本文采用分形模型中的局部维矩阵作为掩模。对两种简单的低通滤波器(i)平均滤波器和高斯滤波器(ii)进行了实验测试,并使用了文献中已知的三种多重分形度量- MIN, MAX和OSC度量。在所有分析的场景中,自适应方法的结果都比非自适应方法有所改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive fractal filtering of echocardiograms
Echocardiograms are inherently corrupted by the speckle noise. Elimination of the noise is usually treated with low-pass filters which can degrade edges in the image. Adaptive approaches employ masks for edges and restrict low-pass filtering mainly to homogeneous regions. Masks are based on statistical parameters or gradients. In this paper are applied local dimension matrices from fractal model as masks. Experimental tests are conducted for two simple low-pass filters (i) average filter and Gaussian filter (ii) and using three multifractal measures known from the literature - MIN, MAX and OSC measure. Obtained results for adaptive approaches show improvements over non-adaptive approaches in all analyzed scenarios.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信