{"title":"问题分歧而非解决方案:学术界微流控工程师的设计过程","authors":"Jin Woo Lee, S. Daly, A. Huang-Saad, C. Seifert","doi":"10.1115/DETC2018-86134","DOIUrl":null,"url":null,"abstract":"Front-end design processes including problem definition and idea generation set a course for the ultimate success of a design. Many design process models emphasize the importance of divergence — considering alternative options — in promoting creativity. Depending on the circumstances of the design environment, design strategies to support divergence may be different as design processes are impacted by various contextual factors, such as available resources and expertise. To investigate how engineers explore alternatives during front-end design, we interviewed 10 academic engineers working in the discipline of microfluidics. Typically, a design process is described as identifying a problem and then generating potential solutions. In our sample, we found these engineers began their design processes with an existing solution and then searched for problems that fit. This qualitative study provided rich descriptions of design processes that show little to no evidence of divergence in generating possible solutions, and instead provide evidence of significant divergence in exploring possible problems. These data suggest traditional models of the design process are inadequate to capture the inverted solution-to-problem design process evident in designs of microfluidic devices created by academics. Understanding how design processes are altered in practice based on contextual factors such as setting and discipline can lead to strategies to better support innovation.","PeriodicalId":375011,"journal":{"name":"Volume 7: 30th International Conference on Design Theory and Methodology","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Divergence in Problems Rather Than Solutions: Design Processes of Microfluidic Engineers in Academia\",\"authors\":\"Jin Woo Lee, S. Daly, A. Huang-Saad, C. Seifert\",\"doi\":\"10.1115/DETC2018-86134\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Front-end design processes including problem definition and idea generation set a course for the ultimate success of a design. Many design process models emphasize the importance of divergence — considering alternative options — in promoting creativity. Depending on the circumstances of the design environment, design strategies to support divergence may be different as design processes are impacted by various contextual factors, such as available resources and expertise. To investigate how engineers explore alternatives during front-end design, we interviewed 10 academic engineers working in the discipline of microfluidics. Typically, a design process is described as identifying a problem and then generating potential solutions. In our sample, we found these engineers began their design processes with an existing solution and then searched for problems that fit. This qualitative study provided rich descriptions of design processes that show little to no evidence of divergence in generating possible solutions, and instead provide evidence of significant divergence in exploring possible problems. These data suggest traditional models of the design process are inadequate to capture the inverted solution-to-problem design process evident in designs of microfluidic devices created by academics. Understanding how design processes are altered in practice based on contextual factors such as setting and discipline can lead to strategies to better support innovation.\",\"PeriodicalId\":375011,\"journal\":{\"name\":\"Volume 7: 30th International Conference on Design Theory and Methodology\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 7: 30th International Conference on Design Theory and Methodology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/DETC2018-86134\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 7: 30th International Conference on Design Theory and Methodology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/DETC2018-86134","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Divergence in Problems Rather Than Solutions: Design Processes of Microfluidic Engineers in Academia
Front-end design processes including problem definition and idea generation set a course for the ultimate success of a design. Many design process models emphasize the importance of divergence — considering alternative options — in promoting creativity. Depending on the circumstances of the design environment, design strategies to support divergence may be different as design processes are impacted by various contextual factors, such as available resources and expertise. To investigate how engineers explore alternatives during front-end design, we interviewed 10 academic engineers working in the discipline of microfluidics. Typically, a design process is described as identifying a problem and then generating potential solutions. In our sample, we found these engineers began their design processes with an existing solution and then searched for problems that fit. This qualitative study provided rich descriptions of design processes that show little to no evidence of divergence in generating possible solutions, and instead provide evidence of significant divergence in exploring possible problems. These data suggest traditional models of the design process are inadequate to capture the inverted solution-to-problem design process evident in designs of microfluidic devices created by academics. Understanding how design processes are altered in practice based on contextual factors such as setting and discipline can lead to strategies to better support innovation.