基于交叉相关概念的心电信号神经网络分类

A. N, B. Choudhury, R. U. Nair
{"title":"基于交叉相关概念的心电信号神经网络分类","authors":"A. N, B. Choudhury, R. U. Nair","doi":"10.1109/AESPC44649.2018.9033441","DOIUrl":null,"url":null,"abstract":"A standard clinical electrocardiogram signal plays a major role in preliminary screening of cardiac abnormalities. This work deals with classification of normal and inferior myocardial infarction and presents a method for artificial neural network based analysis of ECG patterns using cross correlation concepts and ECG feature analysis using a novel feature set. In this paper, five novel parameters are used as attributes for the ANN; they are maximum value and average value of cross correlation between normal template and sample to be tested, amplitude of Q wave peak, amplitude of S wave peak and QT zone amplitude sum. The ANN model trained using these attributes gives an accuracy of 100% on the selected training set and almost 87% accuracy on the selected test set.","PeriodicalId":222759,"journal":{"name":"2018 International Conference on Applied Electromagnetics, Signal Processing and Communication (AESPC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"ANN based Classification of ECG Signals for Myocardial Infarction using Cross Correlation Concepts\",\"authors\":\"A. N, B. Choudhury, R. U. Nair\",\"doi\":\"10.1109/AESPC44649.2018.9033441\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A standard clinical electrocardiogram signal plays a major role in preliminary screening of cardiac abnormalities. This work deals with classification of normal and inferior myocardial infarction and presents a method for artificial neural network based analysis of ECG patterns using cross correlation concepts and ECG feature analysis using a novel feature set. In this paper, five novel parameters are used as attributes for the ANN; they are maximum value and average value of cross correlation between normal template and sample to be tested, amplitude of Q wave peak, amplitude of S wave peak and QT zone amplitude sum. The ANN model trained using these attributes gives an accuracy of 100% on the selected training set and almost 87% accuracy on the selected test set.\",\"PeriodicalId\":222759,\"journal\":{\"name\":\"2018 International Conference on Applied Electromagnetics, Signal Processing and Communication (AESPC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Conference on Applied Electromagnetics, Signal Processing and Communication (AESPC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AESPC44649.2018.9033441\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Applied Electromagnetics, Signal Processing and Communication (AESPC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AESPC44649.2018.9033441","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

标准的临床心电图信号在心脏异常的初步筛查中起着重要作用。本文研究了正常心肌梗死和亚下型心肌梗死的分类,并提出了一种基于人工神经网络的心电模式分析方法,该方法使用互相关概念和使用新的特征集进行心电特征分析。本文采用5个新参数作为人工神经网络的属性;分别是正态模板与待测样品间相互关系的最大值和平均值、Q波峰幅值、S波峰幅值和QT区幅值之和。使用这些属性训练的人工神经网络模型在选定的训练集上的准确率为100%,在选定的测试集上的准确率几乎为87%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ANN based Classification of ECG Signals for Myocardial Infarction using Cross Correlation Concepts
A standard clinical electrocardiogram signal plays a major role in preliminary screening of cardiac abnormalities. This work deals with classification of normal and inferior myocardial infarction and presents a method for artificial neural network based analysis of ECG patterns using cross correlation concepts and ECG feature analysis using a novel feature set. In this paper, five novel parameters are used as attributes for the ANN; they are maximum value and average value of cross correlation between normal template and sample to be tested, amplitude of Q wave peak, amplitude of S wave peak and QT zone amplitude sum. The ANN model trained using these attributes gives an accuracy of 100% on the selected training set and almost 87% accuracy on the selected test set.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信