{"title":"高能电子与强激光脉冲正面碰撞产生的单峰和双峰脉冲的辐射特性","authors":"Yu Chen, Hui Liu, Yu Cai, Youwei Tian","doi":"10.1117/12.2600888","DOIUrl":null,"url":null,"abstract":"According to Lorentz equation and electron motion equation, a collision model between a high-energy electron and an intense laser pulse is constructed, and the three-dimensional trajectory of electron motion and the pulse width, peak radiation power and frequency spectrum of radiation pulses under different observation angles and different laser pulse intensities are simulated by MATLAB software. The simulation results show that the motion of high-energy electron in the collision process is spiral for the intense laser pulse with initial phase φ 0 = 0 . When the observation angle Φ is 0° and 180°, the collision produces single zeptosecond pulse and double zeptosecond pulse, respectively. At Φ = 0, the peak radiation power of the radiation pulse is the largest, the pulse width is the smallest, and the spectrum presents two rising and falling shapes. At Φ= 180°, except that the spectrum shows the shape of first rising and then falling, other characteristics are opposite to those at Φ= 0°. The above characteristics of the laser pulse with ai = 80 are better than those of the laser pulse with ai = 50.","PeriodicalId":330466,"journal":{"name":"Sixteenth National Conference on Laser Technology and Optoelectronics","volume":"113 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Radiation characteristics of single and double peak pulses produced by a high energy electron head-on colliding with an intense laser pulse\",\"authors\":\"Yu Chen, Hui Liu, Yu Cai, Youwei Tian\",\"doi\":\"10.1117/12.2600888\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"According to Lorentz equation and electron motion equation, a collision model between a high-energy electron and an intense laser pulse is constructed, and the three-dimensional trajectory of electron motion and the pulse width, peak radiation power and frequency spectrum of radiation pulses under different observation angles and different laser pulse intensities are simulated by MATLAB software. The simulation results show that the motion of high-energy electron in the collision process is spiral for the intense laser pulse with initial phase φ 0 = 0 . When the observation angle Φ is 0° and 180°, the collision produces single zeptosecond pulse and double zeptosecond pulse, respectively. At Φ = 0, the peak radiation power of the radiation pulse is the largest, the pulse width is the smallest, and the spectrum presents two rising and falling shapes. At Φ= 180°, except that the spectrum shows the shape of first rising and then falling, other characteristics are opposite to those at Φ= 0°. The above characteristics of the laser pulse with ai = 80 are better than those of the laser pulse with ai = 50.\",\"PeriodicalId\":330466,\"journal\":{\"name\":\"Sixteenth National Conference on Laser Technology and Optoelectronics\",\"volume\":\"113 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sixteenth National Conference on Laser Technology and Optoelectronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2600888\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sixteenth National Conference on Laser Technology and Optoelectronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2600888","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Radiation characteristics of single and double peak pulses produced by a high energy electron head-on colliding with an intense laser pulse
According to Lorentz equation and electron motion equation, a collision model between a high-energy electron and an intense laser pulse is constructed, and the three-dimensional trajectory of electron motion and the pulse width, peak radiation power and frequency spectrum of radiation pulses under different observation angles and different laser pulse intensities are simulated by MATLAB software. The simulation results show that the motion of high-energy electron in the collision process is spiral for the intense laser pulse with initial phase φ 0 = 0 . When the observation angle Φ is 0° and 180°, the collision produces single zeptosecond pulse and double zeptosecond pulse, respectively. At Φ = 0, the peak radiation power of the radiation pulse is the largest, the pulse width is the smallest, and the spectrum presents two rising and falling shapes. At Φ= 180°, except that the spectrum shows the shape of first rising and then falling, other characteristics are opposite to those at Φ= 0°. The above characteristics of the laser pulse with ai = 80 are better than those of the laser pulse with ai = 50.