预测BSE Sensex:自适应线性元素、前馈和时滞神经网络的性能比较

B. Nair, M. Patturajan, V. Mohandas, R. R. Sreenivasan
{"title":"预测BSE Sensex:自适应线性元素、前馈和时滞神经网络的性能比较","authors":"B. Nair, M. Patturajan, V. Mohandas, R. R. Sreenivasan","doi":"10.1109/EPSCICON.2012.6175277","DOIUrl":null,"url":null,"abstract":"Accurate prediction of financial time series (which can be considered as nonlinear systems) especially in relation to emerging markets like India assumes prominence in that, these markets offer significantly higher opportunities for wealth creation for the investor. This paper compares the effectiveness of different types of Adaptive network architectures in one-step ahead prediction of the daily returns of Bombay Stock Exchange Sensitive Index (SENSEX). The performance of each network is evaluated using 17 different performance measures to find the best network architecture. Also, an empirical evaluation of the weak form of Efficient Market Hypothesis (EMH) for the data in reference is carried out here.","PeriodicalId":143947,"journal":{"name":"2012 International Conference on Power, Signals, Controls and Computation","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Predicting the BSE Sensex: Performance comparison of adaptive linear element, feed forward and time delay neural networks\",\"authors\":\"B. Nair, M. Patturajan, V. Mohandas, R. R. Sreenivasan\",\"doi\":\"10.1109/EPSCICON.2012.6175277\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurate prediction of financial time series (which can be considered as nonlinear systems) especially in relation to emerging markets like India assumes prominence in that, these markets offer significantly higher opportunities for wealth creation for the investor. This paper compares the effectiveness of different types of Adaptive network architectures in one-step ahead prediction of the daily returns of Bombay Stock Exchange Sensitive Index (SENSEX). The performance of each network is evaluated using 17 different performance measures to find the best network architecture. Also, an empirical evaluation of the weak form of Efficient Market Hypothesis (EMH) for the data in reference is carried out here.\",\"PeriodicalId\":143947,\"journal\":{\"name\":\"2012 International Conference on Power, Signals, Controls and Computation\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 International Conference on Power, Signals, Controls and Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EPSCICON.2012.6175277\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Conference on Power, Signals, Controls and Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EPSCICON.2012.6175277","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

准确预测金融时间序列(可以被认为是非线性系统),特别是与印度等新兴市场相关的金融时间序列,在这方面具有突出意义,这些市场为投资者创造财富提供了更高的机会。本文比较了不同类型的自适应网络结构对孟买证券交易所敏感指数(SENSEX)日收益提前一步预测的有效性。使用17种不同的性能度量来评估每个网络的性能,以找到最佳的网络架构。此外,本文还对有效市场假说(EMH)的弱形式进行了实证评价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predicting the BSE Sensex: Performance comparison of adaptive linear element, feed forward and time delay neural networks
Accurate prediction of financial time series (which can be considered as nonlinear systems) especially in relation to emerging markets like India assumes prominence in that, these markets offer significantly higher opportunities for wealth creation for the investor. This paper compares the effectiveness of different types of Adaptive network architectures in one-step ahead prediction of the daily returns of Bombay Stock Exchange Sensitive Index (SENSEX). The performance of each network is evaluated using 17 different performance measures to find the best network architecture. Also, an empirical evaluation of the weak form of Efficient Market Hypothesis (EMH) for the data in reference is carried out here.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信