Chetan Kumar Dabhi, G. Pahwa, S. Salahuddin, Chenming Hu
{"title":"基于陷阱辅助隧道的GIDL紧凑模型","authors":"Chetan Kumar Dabhi, G. Pahwa, S. Salahuddin, Chenming Hu","doi":"10.1109/DRC55272.2022.9855798","DOIUrl":null,"url":null,"abstract":"State-of-the-art FinFETs exhibit the Gate-Induced-Drain-Leakage (GIDL) current, which cannot be attributed entirely to conventional Band-to-Band Tunneling (BTBT) physics for GIDL [1]. For the strained FinFET technology, the Trap-Assisted Tunneling (TAT) is the governing physical mechanism for most GIDL leakage due to a low gate induced vertical field in the gate-drain overlap region. This work presents the TAT-based GIDL compact model, and the developed model is validated with measurement data and TCAD simulations. The model is implemented as part of the industry-standard BSIM-CMG compact model for FinFETs.","PeriodicalId":200504,"journal":{"name":"2022 Device Research Conference (DRC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Compact Model for Trap Assisted Tunneling based GIDL\",\"authors\":\"Chetan Kumar Dabhi, G. Pahwa, S. Salahuddin, Chenming Hu\",\"doi\":\"10.1109/DRC55272.2022.9855798\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"State-of-the-art FinFETs exhibit the Gate-Induced-Drain-Leakage (GIDL) current, which cannot be attributed entirely to conventional Band-to-Band Tunneling (BTBT) physics for GIDL [1]. For the strained FinFET technology, the Trap-Assisted Tunneling (TAT) is the governing physical mechanism for most GIDL leakage due to a low gate induced vertical field in the gate-drain overlap region. This work presents the TAT-based GIDL compact model, and the developed model is validated with measurement data and TCAD simulations. The model is implemented as part of the industry-standard BSIM-CMG compact model for FinFETs.\",\"PeriodicalId\":200504,\"journal\":{\"name\":\"2022 Device Research Conference (DRC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 Device Research Conference (DRC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DRC55272.2022.9855798\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Device Research Conference (DRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DRC55272.2022.9855798","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Compact Model for Trap Assisted Tunneling based GIDL
State-of-the-art FinFETs exhibit the Gate-Induced-Drain-Leakage (GIDL) current, which cannot be attributed entirely to conventional Band-to-Band Tunneling (BTBT) physics for GIDL [1]. For the strained FinFET technology, the Trap-Assisted Tunneling (TAT) is the governing physical mechanism for most GIDL leakage due to a low gate induced vertical field in the gate-drain overlap region. This work presents the TAT-based GIDL compact model, and the developed model is validated with measurement data and TCAD simulations. The model is implemented as part of the industry-standard BSIM-CMG compact model for FinFETs.