缺乏完整分类定义的医学图像的上下文相关分类

T. Jackson, M. Merickel
{"title":"缺乏完整分类定义的医学图像的上下文相关分类","authors":"T. Jackson, M. Merickel","doi":"10.1109/NEBC.1993.404354","DOIUrl":null,"url":null,"abstract":"A method is developed to automatically classify multispectral medical images using context-dependent methods. The model is built with the knowledge that clusters of tissue features will overlap in feature space. The goal is to correctly classify pixels in these overlapping regions. The model also allows for the possibility that there may be no match for a particular pixel. Initialization of the likelihood of a pixel belonging to a tissue class can take advantage of a priori class distributions if such knowledge exists. Otherwise, the model can resort to modeling each class with a Gaussian distribution. These likelihoods can then be iteratively updated using the relaxation labeling algorithm. Once the model converges, iterations cease and each pixel is classified using the maximum likelihood for all classes.<<ETX>>","PeriodicalId":159783,"journal":{"name":"1993 IEEE Annual Northeast Bioengineering Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Context-dependent classification of medical images in the absence of complete class definitions\",\"authors\":\"T. Jackson, M. Merickel\",\"doi\":\"10.1109/NEBC.1993.404354\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A method is developed to automatically classify multispectral medical images using context-dependent methods. The model is built with the knowledge that clusters of tissue features will overlap in feature space. The goal is to correctly classify pixels in these overlapping regions. The model also allows for the possibility that there may be no match for a particular pixel. Initialization of the likelihood of a pixel belonging to a tissue class can take advantage of a priori class distributions if such knowledge exists. Otherwise, the model can resort to modeling each class with a Gaussian distribution. These likelihoods can then be iteratively updated using the relaxation labeling algorithm. Once the model converges, iterations cease and each pixel is classified using the maximum likelihood for all classes.<<ETX>>\",\"PeriodicalId\":159783,\"journal\":{\"name\":\"1993 IEEE Annual Northeast Bioengineering Conference\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1993-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1993 IEEE Annual Northeast Bioengineering Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NEBC.1993.404354\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1993 IEEE Annual Northeast Bioengineering Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEBC.1993.404354","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种基于上下文的多光谱医学图像自动分类方法。该模型是根据组织特征簇在特征空间中重叠的知识建立的。目标是在这些重叠区域中正确分类像素。该模型还允许可能没有匹配特定像素的可能性。如果存在这样的知识,则初始化属于组织类的像素的似然可以利用先验类分布。否则,该模型可以采用高斯分布对每个类进行建模。然后可以使用松弛标记算法迭代更新这些可能性。一旦模型收敛,迭代停止,使用所有类的最大似然对每个像素进行分类
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Context-dependent classification of medical images in the absence of complete class definitions
A method is developed to automatically classify multispectral medical images using context-dependent methods. The model is built with the knowledge that clusters of tissue features will overlap in feature space. The goal is to correctly classify pixels in these overlapping regions. The model also allows for the possibility that there may be no match for a particular pixel. Initialization of the likelihood of a pixel belonging to a tissue class can take advantage of a priori class distributions if such knowledge exists. Otherwise, the model can resort to modeling each class with a Gaussian distribution. These likelihoods can then be iteratively updated using the relaxation labeling algorithm. Once the model converges, iterations cease and each pixel is classified using the maximum likelihood for all classes.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信