S. Nagahara, Arnaud Dauendorffer, A. Thiam, Xiang Liu, Yuhei Kuwahara, C. Dinh, Soichiro Okada, S. Kawakami, H. Genjima, Noriaki Nagamine, M. Muramatsu, S. Shimura, A. Tsuboi, K. Nafus, Y. Feurprier, M. Demand, R. Ramaneti, P. Foubert, D. De Simone, Geert Vendenberghe
{"title":"高na极紫外制备技术的最新进展","authors":"S. Nagahara, Arnaud Dauendorffer, A. Thiam, Xiang Liu, Yuhei Kuwahara, C. Dinh, Soichiro Okada, S. Kawakami, H. Genjima, Noriaki Nagamine, M. Muramatsu, S. Shimura, A. Tsuboi, K. Nafus, Y. Feurprier, M. Demand, R. Ramaneti, P. Foubert, D. De Simone, Geert Vendenberghe","doi":"10.1117/12.2657432","DOIUrl":null,"url":null,"abstract":"High-NA EUV lithography is currently under development to keep up with device node scaling with smaller feature sizes. In this paper, the most recent advances in EUV patterning using metal oxide resists (MOR) and chemically amplified resists (CAR) are discussed. A newly developed resist development method (ESPERT™) was examined on MOR with 24 nm pitch line and space (L/S) patterns and 32 nm pitch pillars for preparation of high-NA EUV patterning. The patterning results showed improved sensitivity and pattern collapse margin. CAR contact hole patterning at 28 nm pitch was also examined by stochastic lithography simulation. The simulation results indicate that resist film thickness needs to be optimized for target pitches.","PeriodicalId":212235,"journal":{"name":"Advanced Lithography","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Recent advances in EUV patterning in preparation towards high-NA EUV\",\"authors\":\"S. Nagahara, Arnaud Dauendorffer, A. Thiam, Xiang Liu, Yuhei Kuwahara, C. Dinh, Soichiro Okada, S. Kawakami, H. Genjima, Noriaki Nagamine, M. Muramatsu, S. Shimura, A. Tsuboi, K. Nafus, Y. Feurprier, M. Demand, R. Ramaneti, P. Foubert, D. De Simone, Geert Vendenberghe\",\"doi\":\"10.1117/12.2657432\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High-NA EUV lithography is currently under development to keep up with device node scaling with smaller feature sizes. In this paper, the most recent advances in EUV patterning using metal oxide resists (MOR) and chemically amplified resists (CAR) are discussed. A newly developed resist development method (ESPERT™) was examined on MOR with 24 nm pitch line and space (L/S) patterns and 32 nm pitch pillars for preparation of high-NA EUV patterning. The patterning results showed improved sensitivity and pattern collapse margin. CAR contact hole patterning at 28 nm pitch was also examined by stochastic lithography simulation. The simulation results indicate that resist film thickness needs to be optimized for target pitches.\",\"PeriodicalId\":212235,\"journal\":{\"name\":\"Advanced Lithography\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Lithography\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2657432\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Lithography","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2657432","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Recent advances in EUV patterning in preparation towards high-NA EUV
High-NA EUV lithography is currently under development to keep up with device node scaling with smaller feature sizes. In this paper, the most recent advances in EUV patterning using metal oxide resists (MOR) and chemically amplified resists (CAR) are discussed. A newly developed resist development method (ESPERT™) was examined on MOR with 24 nm pitch line and space (L/S) patterns and 32 nm pitch pillars for preparation of high-NA EUV patterning. The patterning results showed improved sensitivity and pattern collapse margin. CAR contact hole patterning at 28 nm pitch was also examined by stochastic lithography simulation. The simulation results indicate that resist film thickness needs to be optimized for target pitches.