具有多输出延迟和数据丢失的网络系统的卡尔曼滤波器和无偏FIR滤波器的比较

Karen J. Uribe-Murcia, Jorge A. Ortega-Contreras, Eli Pale-Ramon, Miguel Vazquez-Olguin, Y. Shmaliy
{"title":"具有多输出延迟和数据丢失的网络系统的卡尔曼滤波器和无偏FIR滤波器的比较","authors":"Karen J. Uribe-Murcia, Jorge A. Ortega-Contreras, Eli Pale-Ramon, Miguel Vazquez-Olguin, Y. Shmaliy","doi":"10.37394/23201.2022.21.19","DOIUrl":null,"url":null,"abstract":"In this article, a comparison of the UFIR and Kalman filter to estimate a tracking vehicle system variables is developed considering two possible observation output models. The time stamp approach and the predictive compensation are used to analyze the problem from multiple perturbations, which produces random delayed data and losses during transmissions. For the estimation, a transformation model and a decorrelation covariance matrices are developed with the aim of assure optimal conditions and minimizing the estimation error. Finally, several real situations, miss modeling, uncertain noise covariances, and uncertain probabilities are proposed to demonstrate the effectiveness and robustness of the filter proposed.","PeriodicalId":376260,"journal":{"name":"WSEAS TRANSACTIONS ON CIRCUITS AND SYSTEMS","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparison of the Kalman Filter and the Unbiased FIR Filter for Network Systems with Multiples Output Delays and Lost Data\",\"authors\":\"Karen J. Uribe-Murcia, Jorge A. Ortega-Contreras, Eli Pale-Ramon, Miguel Vazquez-Olguin, Y. Shmaliy\",\"doi\":\"10.37394/23201.2022.21.19\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, a comparison of the UFIR and Kalman filter to estimate a tracking vehicle system variables is developed considering two possible observation output models. The time stamp approach and the predictive compensation are used to analyze the problem from multiple perturbations, which produces random delayed data and losses during transmissions. For the estimation, a transformation model and a decorrelation covariance matrices are developed with the aim of assure optimal conditions and minimizing the estimation error. Finally, several real situations, miss modeling, uncertain noise covariances, and uncertain probabilities are proposed to demonstrate the effectiveness and robustness of the filter proposed.\",\"PeriodicalId\":376260,\"journal\":{\"name\":\"WSEAS TRANSACTIONS ON CIRCUITS AND SYSTEMS\",\"volume\":\"81 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"WSEAS TRANSACTIONS ON CIRCUITS AND SYSTEMS\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37394/23201.2022.21.19\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"WSEAS TRANSACTIONS ON CIRCUITS AND SYSTEMS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37394/23201.2022.21.19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文在考虑两种可能的观测输出模型的情况下,对UFIR和卡尔曼滤波估计跟踪车辆系统变量进行了比较。采用时间戳方法和预测补偿方法分析了在传输过程中产生随机延迟数据和损失的多重扰动问题。为了保证最优条件和最小化估计误差,建立了变换模型和去相关协方差矩阵。最后,通过建模缺失、不确定噪声协方差和不确定概率等实际情况,验证了所提滤波器的有效性和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparison of the Kalman Filter and the Unbiased FIR Filter for Network Systems with Multiples Output Delays and Lost Data
In this article, a comparison of the UFIR and Kalman filter to estimate a tracking vehicle system variables is developed considering two possible observation output models. The time stamp approach and the predictive compensation are used to analyze the problem from multiple perturbations, which produces random delayed data and losses during transmissions. For the estimation, a transformation model and a decorrelation covariance matrices are developed with the aim of assure optimal conditions and minimizing the estimation error. Finally, several real situations, miss modeling, uncertain noise covariances, and uncertain probabilities are proposed to demonstrate the effectiveness and robustness of the filter proposed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信