{"title":"零点处的约当可导映射","authors":"Hong-xia Li","doi":"10.1109/CISE.2010.5677101","DOIUrl":null,"url":null,"abstract":"Let β be an arbitrary non-trivial nest in any factor von Neumann algebra M; and φ: algMβ→M be a weakly continuous linear mapping. We say that φ is a Jordan derivable mapping at zero point if φ(AB + BA) = φ(A)B + Aφ(B) +φ(B)A + Bφ(A) for all A,B∈Α with AB + BA = 0. In this paper, we prove that if φ is a Jordan derivable mapping at zero point, then there exist a derivation δ:algMβ→M and a scalar λ∈C such that φ(A)=δ(A) +λA for all A in algMβ.","PeriodicalId":232832,"journal":{"name":"2010 International Conference on Computational Intelligence and Software Engineering","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Jordan Derivable Mappings at Zero Point\",\"authors\":\"Hong-xia Li\",\"doi\":\"10.1109/CISE.2010.5677101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let β be an arbitrary non-trivial nest in any factor von Neumann algebra M; and φ: algMβ→M be a weakly continuous linear mapping. We say that φ is a Jordan derivable mapping at zero point if φ(AB + BA) = φ(A)B + Aφ(B) +φ(B)A + Bφ(A) for all A,B∈Α with AB + BA = 0. In this paper, we prove that if φ is a Jordan derivable mapping at zero point, then there exist a derivation δ:algMβ→M and a scalar λ∈C such that φ(A)=δ(A) +λA for all A in algMβ.\",\"PeriodicalId\":232832,\"journal\":{\"name\":\"2010 International Conference on Computational Intelligence and Software Engineering\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 International Conference on Computational Intelligence and Software Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CISE.2010.5677101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Computational Intelligence and Software Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISE.2010.5677101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
设β是任意因子von Neumann代数M中的任意非平凡巢;φ: algMβ→M为弱连续线性映射。当φ(AB + BA) = φ(a)B + a φ(B) +φ(B) a + Bφ(B) a + Bφ(a)时,对于所有a,B∈Α,当AB + BA = 0时,我们说φ是在零点处的约当可导映射。本文证明了如果φ是在零点处的约当可导映射,则存在一个导数δ:algMβ→M和一个标量λ∈C,使得对于algMβ中的所有a, φ(a)=δ(a) +λ a。
Let β be an arbitrary non-trivial nest in any factor von Neumann algebra M; and φ: algMβ→M be a weakly continuous linear mapping. We say that φ is a Jordan derivable mapping at zero point if φ(AB + BA) = φ(A)B + Aφ(B) +φ(B)A + Bφ(A) for all A,B∈Α with AB + BA = 0. In this paper, we prove that if φ is a Jordan derivable mapping at zero point, then there exist a derivation δ:algMβ→M and a scalar λ∈C such that φ(A)=δ(A) +λA for all A in algMβ.