零点处的约当可导映射

Hong-xia Li
{"title":"零点处的约当可导映射","authors":"Hong-xia Li","doi":"10.1109/CISE.2010.5677101","DOIUrl":null,"url":null,"abstract":"Let β be an arbitrary non-trivial nest in any factor von Neumann algebra M; and φ: algMβ→M be a weakly continuous linear mapping. We say that φ is a Jordan derivable mapping at zero point if φ(AB + BA) = φ(A)B + Aφ(B) +φ(B)A + Bφ(A) for all A,B∈Α with AB + BA = 0. In this paper, we prove that if φ is a Jordan derivable mapping at zero point, then there exist a derivation δ:algMβ→M and a scalar λ∈C such that φ(A)=δ(A) +λA for all A in algMβ.","PeriodicalId":232832,"journal":{"name":"2010 International Conference on Computational Intelligence and Software Engineering","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Jordan Derivable Mappings at Zero Point\",\"authors\":\"Hong-xia Li\",\"doi\":\"10.1109/CISE.2010.5677101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let β be an arbitrary non-trivial nest in any factor von Neumann algebra M; and φ: algMβ→M be a weakly continuous linear mapping. We say that φ is a Jordan derivable mapping at zero point if φ(AB + BA) = φ(A)B + Aφ(B) +φ(B)A + Bφ(A) for all A,B∈Α with AB + BA = 0. In this paper, we prove that if φ is a Jordan derivable mapping at zero point, then there exist a derivation δ:algMβ→M and a scalar λ∈C such that φ(A)=δ(A) +λA for all A in algMβ.\",\"PeriodicalId\":232832,\"journal\":{\"name\":\"2010 International Conference on Computational Intelligence and Software Engineering\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 International Conference on Computational Intelligence and Software Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CISE.2010.5677101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Computational Intelligence and Software Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISE.2010.5677101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

设β是任意因子von Neumann代数M中的任意非平凡巢;φ: algMβ→M为弱连续线性映射。当φ(AB + BA) = φ(a)B + a φ(B) +φ(B) a + Bφ(B) a + Bφ(a)时,对于所有a,B∈Α,当AB + BA = 0时,我们说φ是在零点处的约当可导映射。本文证明了如果φ是在零点处的约当可导映射,则存在一个导数δ:algMβ→M和一个标量λ∈C,使得对于algMβ中的所有a, φ(a)=δ(a) +λ a。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Jordan Derivable Mappings at Zero Point
Let β be an arbitrary non-trivial nest in any factor von Neumann algebra M; and φ: algMβ→M be a weakly continuous linear mapping. We say that φ is a Jordan derivable mapping at zero point if φ(AB + BA) = φ(A)B + Aφ(B) +φ(B)A + Bφ(A) for all A,B∈Α with AB + BA = 0. In this paper, we prove that if φ is a Jordan derivable mapping at zero point, then there exist a derivation δ:algMβ→M and a scalar λ∈C such that φ(A)=δ(A) +λA for all A in algMβ.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信