柔性聚酰亚胺基板上印刷石墨烯交叉数字电容式传感器

Dogan Sinar, G. Knopf
{"title":"柔性聚酰亚胺基板上印刷石墨烯交叉数字电容式传感器","authors":"Dogan Sinar, G. Knopf","doi":"10.1109/NANO.2014.6968041","DOIUrl":null,"url":null,"abstract":"Interdigitated capacitors (IDC) are extensively used for a variety of chemical and biological sensing applications. Printing and functionalizing these IDC sensors on bendable substrates will lead to new innovations in healthcare and medicine, food safety inspection, environmental monitoring, and public security. The synthesis of an electrically conductive aqueous graphene ink stabilized in deionized water using the polymer Carboxymethyl Cellulose (CMC) is introduced in this paper. CMC is a nontoxic hydrophilic cellulose derivative used in food industry. The water-based graphene ink is then used to fabricate IDC sensors on mechanically flexible polyimide substrates. The capacitance and frequency response of the sensors are analyzed, and the effect of mechanical stress on the electrical properties is examined. Experimental results confirm low thin film resistivity (~6;.6×10-3 Ω-cm) and high capacitance (>100 pF). The printed sensors are then used to measure water content of ethanol solutions to demonstrate the proposed conductive ink and fabrication methodology for creating chemical sensors on thin membranes.","PeriodicalId":367660,"journal":{"name":"14th IEEE International Conference on Nanotechnology","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Printed graphene interdigitated capacitive sensors on flexible polyimide substrates\",\"authors\":\"Dogan Sinar, G. Knopf\",\"doi\":\"10.1109/NANO.2014.6968041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Interdigitated capacitors (IDC) are extensively used for a variety of chemical and biological sensing applications. Printing and functionalizing these IDC sensors on bendable substrates will lead to new innovations in healthcare and medicine, food safety inspection, environmental monitoring, and public security. The synthesis of an electrically conductive aqueous graphene ink stabilized in deionized water using the polymer Carboxymethyl Cellulose (CMC) is introduced in this paper. CMC is a nontoxic hydrophilic cellulose derivative used in food industry. The water-based graphene ink is then used to fabricate IDC sensors on mechanically flexible polyimide substrates. The capacitance and frequency response of the sensors are analyzed, and the effect of mechanical stress on the electrical properties is examined. Experimental results confirm low thin film resistivity (~6;.6×10-3 Ω-cm) and high capacitance (>100 pF). The printed sensors are then used to measure water content of ethanol solutions to demonstrate the proposed conductive ink and fabrication methodology for creating chemical sensors on thin membranes.\",\"PeriodicalId\":367660,\"journal\":{\"name\":\"14th IEEE International Conference on Nanotechnology\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"14th IEEE International Conference on Nanotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NANO.2014.6968041\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"14th IEEE International Conference on Nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NANO.2014.6968041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

交叉电容(IDC)广泛用于各种化学和生物传感应用。在可弯曲基板上印刷和功能化这些IDC传感器将在医疗保健和医药、食品安全检查、环境监测和公共安全方面带来新的创新。介绍了以聚合物羧甲基纤维素(CMC)为原料,在去离子水中稳定制备导电石墨烯水性油墨的方法。CMC是一种无毒的亲水性纤维素衍生物,广泛应用于食品工业。然后使用水性石墨烯油墨在机械柔性聚酰亚胺基板上制造IDC传感器。分析了传感器的电容和频率响应,考察了机械应力对传感器电性能的影响。实验结果证实薄膜电阻率低(~6;6×10-3 Ω-cm)和高电容(> 100pf)。然后将打印的传感器用于测量乙醇溶液的含水量,以演示所提出的导电油墨和在薄膜上创建化学传感器的制造方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Printed graphene interdigitated capacitive sensors on flexible polyimide substrates
Interdigitated capacitors (IDC) are extensively used for a variety of chemical and biological sensing applications. Printing and functionalizing these IDC sensors on bendable substrates will lead to new innovations in healthcare and medicine, food safety inspection, environmental monitoring, and public security. The synthesis of an electrically conductive aqueous graphene ink stabilized in deionized water using the polymer Carboxymethyl Cellulose (CMC) is introduced in this paper. CMC is a nontoxic hydrophilic cellulose derivative used in food industry. The water-based graphene ink is then used to fabricate IDC sensors on mechanically flexible polyimide substrates. The capacitance and frequency response of the sensors are analyzed, and the effect of mechanical stress on the electrical properties is examined. Experimental results confirm low thin film resistivity (~6;.6×10-3 Ω-cm) and high capacitance (>100 pF). The printed sensors are then used to measure water content of ethanol solutions to demonstrate the proposed conductive ink and fabrication methodology for creating chemical sensors on thin membranes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信