非负稀疏恢复的纤维取向分布

Aurobrata Ghosh, Thinhinane Megherbi, Fatima Oulebsir-Boumghar, R. Deriche
{"title":"非负稀疏恢复的纤维取向分布","authors":"Aurobrata Ghosh, Thinhinane Megherbi, Fatima Oulebsir-Boumghar, R. Deriche","doi":"10.1109/ISBI.2013.6556460","DOIUrl":null,"url":null,"abstract":"We revisit the theory of spherical deconvolution and propose a new fiber orientation distribution (FOD) model that can efficiently reconstruct extremely narrow fiber-crossings from limited number of acquisitions. First, we show how to physically model fiber-orientations as rank-1 tensors. Then, we parameterize the FODs with tensors that are decomposable into non-negative sums of rank-1 tensors and finally, we propose a non-negative sparse recovery scheme to estimate FODs of any tensor order from limited acquisitions. Our method features three important advantages: (1) it estimates non-negative FODs, (2) it estimates the number of fiber-compartments, which need not be predefined and (3) it computes the fiber-directions directly, rendering maxima detection superfluous. We test for various SNRs on synthetic, phantom and real data and find our method accurate and robust to signal-noise: fibers crossing up to 23° are recovered from just 21 acquisitions. This opens new and exciting perspectives in diffusion MRI (dMRI), where our improved characterization of the FOD can be of great help for applications such as tractography.","PeriodicalId":178011,"journal":{"name":"2013 IEEE 10th International Symposium on Biomedical Imaging","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Fiber orientation distribution from non-negative sparse recovery\",\"authors\":\"Aurobrata Ghosh, Thinhinane Megherbi, Fatima Oulebsir-Boumghar, R. Deriche\",\"doi\":\"10.1109/ISBI.2013.6556460\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We revisit the theory of spherical deconvolution and propose a new fiber orientation distribution (FOD) model that can efficiently reconstruct extremely narrow fiber-crossings from limited number of acquisitions. First, we show how to physically model fiber-orientations as rank-1 tensors. Then, we parameterize the FODs with tensors that are decomposable into non-negative sums of rank-1 tensors and finally, we propose a non-negative sparse recovery scheme to estimate FODs of any tensor order from limited acquisitions. Our method features three important advantages: (1) it estimates non-negative FODs, (2) it estimates the number of fiber-compartments, which need not be predefined and (3) it computes the fiber-directions directly, rendering maxima detection superfluous. We test for various SNRs on synthetic, phantom and real data and find our method accurate and robust to signal-noise: fibers crossing up to 23° are recovered from just 21 acquisitions. This opens new and exciting perspectives in diffusion MRI (dMRI), where our improved characterization of the FOD can be of great help for applications such as tractography.\",\"PeriodicalId\":178011,\"journal\":{\"name\":\"2013 IEEE 10th International Symposium on Biomedical Imaging\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE 10th International Symposium on Biomedical Imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISBI.2013.6556460\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 10th International Symposium on Biomedical Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2013.6556460","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

我们重新审视了球面反褶积理论,并提出了一种新的光纤取向分布(FOD)模型,该模型可以有效地从有限数量的采集中重建极窄的光纤交叉点。首先,我们展示了如何将纤维取向作为秩1张量进行物理建模。然后,我们用可分解为秩1张量的非负和的张量参数化fod,最后,我们提出了一种非负稀疏恢复方案,用于从有限的获取中估计任意张量阶的fod。我们的方法有三个重要的优点:(1)它估计非负fod;(2)它估计纤维室的数量,不需要预先定义;(3)它直接计算纤维方向,使最大检测变得多余。我们在合成数据、模拟数据和真实数据上测试了各种信噪比,发现我们的方法准确且对信号噪声具有鲁棒性:仅从21次采集中就恢复了交叉高达23°的光纤。这为扩散MRI (dMRI)开辟了新的和令人兴奋的前景,我们改进的FOD表征可以为束状造影等应用提供很大的帮助。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fiber orientation distribution from non-negative sparse recovery
We revisit the theory of spherical deconvolution and propose a new fiber orientation distribution (FOD) model that can efficiently reconstruct extremely narrow fiber-crossings from limited number of acquisitions. First, we show how to physically model fiber-orientations as rank-1 tensors. Then, we parameterize the FODs with tensors that are decomposable into non-negative sums of rank-1 tensors and finally, we propose a non-negative sparse recovery scheme to estimate FODs of any tensor order from limited acquisitions. Our method features three important advantages: (1) it estimates non-negative FODs, (2) it estimates the number of fiber-compartments, which need not be predefined and (3) it computes the fiber-directions directly, rendering maxima detection superfluous. We test for various SNRs on synthetic, phantom and real data and find our method accurate and robust to signal-noise: fibers crossing up to 23° are recovered from just 21 acquisitions. This opens new and exciting perspectives in diffusion MRI (dMRI), where our improved characterization of the FOD can be of great help for applications such as tractography.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信