二进制MEMS光可重构门阵列

Hironobu Morita, Minoru Watanabe
{"title":"二进制MEMS光可重构门阵列","authors":"Hironobu Morita, Minoru Watanabe","doi":"10.1109/ICIS.2010.89","DOIUrl":null,"url":null,"abstract":"Demand for high-speed dynamic reconfiguration for programmable devices has increased since such fast dynamic reconfiguration can increase the programmable gate array performance. To meet that demand, optically reconfigurable gate arrays (ORGAs) have been developed to achieve the fast dynamic reconfiguration. Among such studies, a MEMS ORGA has been developed. The reconfiguration can be executed not only by switching a laser array but also by switching a holographic memory. The first proposed MEMS ORGA took an analog fringe pattern for generating a configuration context, although the MEMS device is a binary spatial light modulator. The switching capability can therefore not be fully exploited from a MEMS device since a MEMS device requires PWM control for generating an analog fringe pattern. This paper presents a novel binary MEMS ORGA. The binary MEMS ORGA has achieved a 312 ns laser-reconfiguration and 22 us holographic memory switching.","PeriodicalId":338038,"journal":{"name":"2010 IEEE/ACIS 9th International Conference on Computer and Information Science","volume":"87 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Binary MEMS Optically Reconfigurable Gate Array\",\"authors\":\"Hironobu Morita, Minoru Watanabe\",\"doi\":\"10.1109/ICIS.2010.89\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Demand for high-speed dynamic reconfiguration for programmable devices has increased since such fast dynamic reconfiguration can increase the programmable gate array performance. To meet that demand, optically reconfigurable gate arrays (ORGAs) have been developed to achieve the fast dynamic reconfiguration. Among such studies, a MEMS ORGA has been developed. The reconfiguration can be executed not only by switching a laser array but also by switching a holographic memory. The first proposed MEMS ORGA took an analog fringe pattern for generating a configuration context, although the MEMS device is a binary spatial light modulator. The switching capability can therefore not be fully exploited from a MEMS device since a MEMS device requires PWM control for generating an analog fringe pattern. This paper presents a novel binary MEMS ORGA. The binary MEMS ORGA has achieved a 312 ns laser-reconfiguration and 22 us holographic memory switching.\",\"PeriodicalId\":338038,\"journal\":{\"name\":\"2010 IEEE/ACIS 9th International Conference on Computer and Information Science\",\"volume\":\"87 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE/ACIS 9th International Conference on Computer and Information Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIS.2010.89\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE/ACIS 9th International Conference on Computer and Information Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIS.2010.89","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于高速动态重构可以提高可编程门阵列的性能,因此对可编程器件的高速动态重构的需求日益增加。为了满足这一需求,光学可重构门阵列(ORGAs)被开发出来以实现快速动态重构。在这些研究中,已经开发了MEMS ORGA。该重构不仅可以通过切换激光阵列来实现,也可以通过切换全息存储器来实现。虽然MEMS器件是二进制空间光调制器,但第一个提出的MEMS ORGA采用模拟条纹模式来生成配置上下文。由于MEMS器件需要PWM控制来生成模拟条纹图案,因此开关能力不能从MEMS器件中充分利用。提出了一种新型二元MEMS ORGA。二进制MEMS ORGA实现了312 ns的激光重构和22 us的全息存储器开关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Binary MEMS Optically Reconfigurable Gate Array
Demand for high-speed dynamic reconfiguration for programmable devices has increased since such fast dynamic reconfiguration can increase the programmable gate array performance. To meet that demand, optically reconfigurable gate arrays (ORGAs) have been developed to achieve the fast dynamic reconfiguration. Among such studies, a MEMS ORGA has been developed. The reconfiguration can be executed not only by switching a laser array but also by switching a holographic memory. The first proposed MEMS ORGA took an analog fringe pattern for generating a configuration context, although the MEMS device is a binary spatial light modulator. The switching capability can therefore not be fully exploited from a MEMS device since a MEMS device requires PWM control for generating an analog fringe pattern. This paper presents a novel binary MEMS ORGA. The binary MEMS ORGA has achieved a 312 ns laser-reconfiguration and 22 us holographic memory switching.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信