Yiming Gu, Z. Qian, Xiao-Feng Xie, Stephen F. Smith
{"title":"一种分析主干道封闭下交通影响的无监督学习方法:以匹兹堡东自由为例","authors":"Yiming Gu, Z. Qian, Xiao-Feng Xie, Stephen F. Smith","doi":"10.1061/(ASCE)TE.1943-5436.0000860","DOIUrl":null,"url":null,"abstract":"AbstractThis paper adopts an unsupervised learning approach, k-means clustering, to analyze the arterial traffic flow data over a high-dimensional spatiotemporal feature space. As part of the adaptive traffic control system deployed around the East Liberty area in Pittsburgh, high-resolution traffic occupancies and counts are available at the lane level in virtually any time resolution. The k-means clustering method is used to analyze those data to understand the traffic patterns before and after the closure and reopening of an arterial bridge. The modeling framework also holds great potentials for predicting traffic flow and detect incidents. The main findings are that clustering on high-dimensional spatiotemporal features can effectively distinguish flow patterns before and after road closure and reopening and between weekends and weekdays. On arterial streets, clustering based on 5-min data is sufficient to eliminate potential distortion on measurements caused by signals. Either of the two, count or oc...","PeriodicalId":305908,"journal":{"name":"Journal of Transportation Engineering-asce","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"An Unsupervised Learning Approach for Analyzing Traffic Impacts under Arterial Road Closures: Case Study of East Liberty in Pittsburgh\",\"authors\":\"Yiming Gu, Z. Qian, Xiao-Feng Xie, Stephen F. Smith\",\"doi\":\"10.1061/(ASCE)TE.1943-5436.0000860\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"AbstractThis paper adopts an unsupervised learning approach, k-means clustering, to analyze the arterial traffic flow data over a high-dimensional spatiotemporal feature space. As part of the adaptive traffic control system deployed around the East Liberty area in Pittsburgh, high-resolution traffic occupancies and counts are available at the lane level in virtually any time resolution. The k-means clustering method is used to analyze those data to understand the traffic patterns before and after the closure and reopening of an arterial bridge. The modeling framework also holds great potentials for predicting traffic flow and detect incidents. The main findings are that clustering on high-dimensional spatiotemporal features can effectively distinguish flow patterns before and after road closure and reopening and between weekends and weekdays. On arterial streets, clustering based on 5-min data is sufficient to eliminate potential distortion on measurements caused by signals. Either of the two, count or oc...\",\"PeriodicalId\":305908,\"journal\":{\"name\":\"Journal of Transportation Engineering-asce\",\"volume\":\"55 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Transportation Engineering-asce\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1061/(ASCE)TE.1943-5436.0000860\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Transportation Engineering-asce","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1061/(ASCE)TE.1943-5436.0000860","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An Unsupervised Learning Approach for Analyzing Traffic Impacts under Arterial Road Closures: Case Study of East Liberty in Pittsburgh
AbstractThis paper adopts an unsupervised learning approach, k-means clustering, to analyze the arterial traffic flow data over a high-dimensional spatiotemporal feature space. As part of the adaptive traffic control system deployed around the East Liberty area in Pittsburgh, high-resolution traffic occupancies and counts are available at the lane level in virtually any time resolution. The k-means clustering method is used to analyze those data to understand the traffic patterns before and after the closure and reopening of an arterial bridge. The modeling framework also holds great potentials for predicting traffic flow and detect incidents. The main findings are that clustering on high-dimensional spatiotemporal features can effectively distinguish flow patterns before and after road closure and reopening and between weekends and weekdays. On arterial streets, clustering based on 5-min data is sufficient to eliminate potential distortion on measurements caused by signals. Either of the two, count or oc...