基于rbf的无网格方法在二维时域麦克斯韦方程组中的应用

S. Lai, Bing-Zhong Wang, Y. Duan
{"title":"基于rbf的无网格方法在二维时域麦克斯韦方程组中的应用","authors":"S. Lai, Bing-Zhong Wang, Y. Duan","doi":"10.1109/ICMMT.2008.4540505","DOIUrl":null,"url":null,"abstract":"Radial basis functions (RBF), as a meshless technique, is widely applied to solve partial differential equations. In this paper, a meshless RBF method is applied to time domain Maxwell's equations and calculates a two-dimensional (2-D) cavity case. The main idea is that the fields in the space domain are expanded into a series of radial basis functions and are treated with a meshless method procedure, and the time derivatives are still tackled with the customary difference scheme. The 2-D cavity numerical experiment has been used to validate the propose technique.","PeriodicalId":315133,"journal":{"name":"2008 International Conference on Microwave and Millimeter Wave Technology","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Application of the RBF-based meshless method to solve 2-D time domain Maxwell’s equations\",\"authors\":\"S. Lai, Bing-Zhong Wang, Y. Duan\",\"doi\":\"10.1109/ICMMT.2008.4540505\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Radial basis functions (RBF), as a meshless technique, is widely applied to solve partial differential equations. In this paper, a meshless RBF method is applied to time domain Maxwell's equations and calculates a two-dimensional (2-D) cavity case. The main idea is that the fields in the space domain are expanded into a series of radial basis functions and are treated with a meshless method procedure, and the time derivatives are still tackled with the customary difference scheme. The 2-D cavity numerical experiment has been used to validate the propose technique.\",\"PeriodicalId\":315133,\"journal\":{\"name\":\"2008 International Conference on Microwave and Millimeter Wave Technology\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 International Conference on Microwave and Millimeter Wave Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMMT.2008.4540505\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 International Conference on Microwave and Millimeter Wave Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMMT.2008.4540505","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

径向基函数作为一种无网格技术,在求解偏微分方程中得到了广泛的应用。本文将无网格RBF方法应用于时域麦克斯韦方程组,并计算了二维空腔情况。其主要思想是将空间域中的场扩展为一系列径向基函数,并采用无网格方法处理,而时间导数仍然采用习惯差分格式处理。用二维腔体数值实验验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application of the RBF-based meshless method to solve 2-D time domain Maxwell’s equations
Radial basis functions (RBF), as a meshless technique, is widely applied to solve partial differential equations. In this paper, a meshless RBF method is applied to time domain Maxwell's equations and calculates a two-dimensional (2-D) cavity case. The main idea is that the fields in the space domain are expanded into a series of radial basis functions and are treated with a meshless method procedure, and the time derivatives are still tackled with the customary difference scheme. The 2-D cavity numerical experiment has been used to validate the propose technique.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信