混合DCT/量化霍夫曼压缩脑电图数据

R. M. Elaskary, Mohamed Saeed, T. Ismail, H. Mostafa, S. Gabran
{"title":"混合DCT/量化霍夫曼压缩脑电图数据","authors":"R. M. Elaskary, Mohamed Saeed, T. Ismail, H. Mostafa, S. Gabran","doi":"10.1109/JEC-ECC.2017.8305790","DOIUrl":null,"url":null,"abstract":"In this paper, We implement the Discrete Cosine Transform (DCT) coding (lossy compression method) followed by the proposed coding technique which called “Quantized Huffman Coding” in order to minimize the EEG data size. Therefore, adding a lossless compression algorithm after the lossy compression is a good idea to get a high compression ratio with acceptable distortion in the original signal. Here, we use DCT encoder followed by either quantized Huffman Coding or Run Length Encoding (RLE) then compare between them. Our work shows that, at the same Root Mean Square Error (RMSE), the quantized Huffman coding outperforms the RLE in some aspects as Compression Ratio (CR) and time consumed in compression and decompression, but Structural Similarity Index (SSIM) is the same for the two techniques.","PeriodicalId":406498,"journal":{"name":"2017 Japan-Africa Conference on Electronics, Communications and Computers (JAC-ECC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Hybrid DCT/Quantized Huffman compression for electroencephalography data\",\"authors\":\"R. M. Elaskary, Mohamed Saeed, T. Ismail, H. Mostafa, S. Gabran\",\"doi\":\"10.1109/JEC-ECC.2017.8305790\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, We implement the Discrete Cosine Transform (DCT) coding (lossy compression method) followed by the proposed coding technique which called “Quantized Huffman Coding” in order to minimize the EEG data size. Therefore, adding a lossless compression algorithm after the lossy compression is a good idea to get a high compression ratio with acceptable distortion in the original signal. Here, we use DCT encoder followed by either quantized Huffman Coding or Run Length Encoding (RLE) then compare between them. Our work shows that, at the same Root Mean Square Error (RMSE), the quantized Huffman coding outperforms the RLE in some aspects as Compression Ratio (CR) and time consumed in compression and decompression, but Structural Similarity Index (SSIM) is the same for the two techniques.\",\"PeriodicalId\":406498,\"journal\":{\"name\":\"2017 Japan-Africa Conference on Electronics, Communications and Computers (JAC-ECC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 Japan-Africa Conference on Electronics, Communications and Computers (JAC-ECC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/JEC-ECC.2017.8305790\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Japan-Africa Conference on Electronics, Communications and Computers (JAC-ECC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/JEC-ECC.2017.8305790","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

在本文中,我们实现离散余弦变换(DCT)编码(有损压缩方法),然后提出了一种称为“量化霍夫曼编码”的编码技术,以最大限度地减少脑电数据的大小。因此,在有损压缩之后加入一种无损压缩算法是一个很好的方法,可以在原始信号中获得高的压缩比和可接受的失真。在这里,我们使用DCT编码器,然后是量化霍夫曼编码或运行长度编码(RLE),然后在它们之间进行比较。我们的研究表明,在相同的均方根误差(RMSE)下,量化霍夫曼编码在某些方面优于RLE,如压缩比(CR)和压缩与解压所消耗的时间,但两种技术的结构相似指数(SSIM)相同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hybrid DCT/Quantized Huffman compression for electroencephalography data
In this paper, We implement the Discrete Cosine Transform (DCT) coding (lossy compression method) followed by the proposed coding technique which called “Quantized Huffman Coding” in order to minimize the EEG data size. Therefore, adding a lossless compression algorithm after the lossy compression is a good idea to get a high compression ratio with acceptable distortion in the original signal. Here, we use DCT encoder followed by either quantized Huffman Coding or Run Length Encoding (RLE) then compare between them. Our work shows that, at the same Root Mean Square Error (RMSE), the quantized Huffman coding outperforms the RLE in some aspects as Compression Ratio (CR) and time consumed in compression and decompression, but Structural Similarity Index (SSIM) is the same for the two techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信