{"title":"二次方程的复根可视化","authors":"Thomas G. Edwards, S. A. Özgün-Koca, K. Chelst","doi":"10.5951/MTLT.2020.0028","DOIUrl":null,"url":null,"abstract":"A quadratic equation was the basis for activities involving both concrete and technological representations.","PeriodicalId":188924,"journal":{"name":"Mathematics Teacher: Learning and Teaching PK–12","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Visualizing Complex Roots of a Quadratic Equation\",\"authors\":\"Thomas G. Edwards, S. A. Özgün-Koca, K. Chelst\",\"doi\":\"10.5951/MTLT.2020.0028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A quadratic equation was the basis for activities involving both concrete and technological representations.\",\"PeriodicalId\":188924,\"journal\":{\"name\":\"Mathematics Teacher: Learning and Teaching PK–12\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics Teacher: Learning and Teaching PK–12\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5951/MTLT.2020.0028\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics Teacher: Learning and Teaching PK–12","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5951/MTLT.2020.0028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}