一种改进的多层网络PageRank算法

Jo Cheriyan, G. Sajeev
{"title":"一种改进的多层网络PageRank算法","authors":"Jo Cheriyan, G. Sajeev","doi":"10.1109/CONECCT50063.2020.9198566","DOIUrl":null,"url":null,"abstract":"Complex networks are suitable for modeling real world systems. A multilayer network is a complex network, where each node establishes relationships with other nodes, across the layers. Ranking of nodes in multilayer networks is considered to be a key research problem for analyzing the dynamics of networks. In general, nodes are ranked using metrics such as degree centrality, betweenness centrality, and PageRank. However, these metrics are not suitable for multilayer networks, since rank may not display the actual influence of a node. This paper proposes a novel ranking metric m-PageRank for finding influential nodes in the multilayer network. Experiments using real dataset show the benefits of proposed metric.","PeriodicalId":261794,"journal":{"name":"2020 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"An Improved PageRank Algorithm for Multilayer Networks\",\"authors\":\"Jo Cheriyan, G. Sajeev\",\"doi\":\"10.1109/CONECCT50063.2020.9198566\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Complex networks are suitable for modeling real world systems. A multilayer network is a complex network, where each node establishes relationships with other nodes, across the layers. Ranking of nodes in multilayer networks is considered to be a key research problem for analyzing the dynamics of networks. In general, nodes are ranked using metrics such as degree centrality, betweenness centrality, and PageRank. However, these metrics are not suitable for multilayer networks, since rank may not display the actual influence of a node. This paper proposes a novel ranking metric m-PageRank for finding influential nodes in the multilayer network. Experiments using real dataset show the benefits of proposed metric.\",\"PeriodicalId\":261794,\"journal\":{\"name\":\"2020 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CONECCT50063.2020.9198566\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CONECCT50063.2020.9198566","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

复杂网络适合于对现实世界的系统进行建模。多层网络是一个复杂的网络,其中每个节点跨层与其他节点建立关系。多层网络中节点的排序是分析网络动力学的一个关键研究问题。通常,使用度中心性、中间中心性和PageRank等指标对节点进行排序。然而,这些指标不适用于多层网络,因为等级可能无法显示节点的实际影响。本文提出了一种新的排序度量m-PageRank,用于在多层网络中寻找有影响的节点。使用真实数据集的实验表明了所提度量的优点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Improved PageRank Algorithm for Multilayer Networks
Complex networks are suitable for modeling real world systems. A multilayer network is a complex network, where each node establishes relationships with other nodes, across the layers. Ranking of nodes in multilayer networks is considered to be a key research problem for analyzing the dynamics of networks. In general, nodes are ranked using metrics such as degree centrality, betweenness centrality, and PageRank. However, these metrics are not suitable for multilayer networks, since rank may not display the actual influence of a node. This paper proposes a novel ranking metric m-PageRank for finding influential nodes in the multilayer network. Experiments using real dataset show the benefits of proposed metric.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信