Antonio Javier Barragán-Piña, J. Márquez, Mariano J. Aznar Torres, A. Jiménez, B. M. Al-Hadithi
{"title":"应用扩展卡尔曼滤波自适应模糊系统参数的方法","authors":"Antonio Javier Barragán-Piña, J. Márquez, Mariano J. Aznar Torres, A. Jiménez, B. M. Al-Hadithi","doi":"10.2991/eusflat.2011.65","DOIUrl":null,"url":null,"abstract":"When we try to analyze and to control a system whose model was obtained only based on input/output data, accuracy is essential in the model. On the other hand, to make the procedure practical, the modeling stage must be computationally efficient. In this regard, this paper presents the application of extended Kalman filter for the parametric adaptation of a fuzzy model.","PeriodicalId":403191,"journal":{"name":"EUSFLAT Conf.","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Methodology for adapting the parameters of a fuzzy system using the extended Kalman filter\",\"authors\":\"Antonio Javier Barragán-Piña, J. Márquez, Mariano J. Aznar Torres, A. Jiménez, B. M. Al-Hadithi\",\"doi\":\"10.2991/eusflat.2011.65\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"When we try to analyze and to control a system whose model was obtained only based on input/output data, accuracy is essential in the model. On the other hand, to make the procedure practical, the modeling stage must be computationally efficient. In this regard, this paper presents the application of extended Kalman filter for the parametric adaptation of a fuzzy model.\",\"PeriodicalId\":403191,\"journal\":{\"name\":\"EUSFLAT Conf.\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EUSFLAT Conf.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2991/eusflat.2011.65\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EUSFLAT Conf.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2991/eusflat.2011.65","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Methodology for adapting the parameters of a fuzzy system using the extended Kalman filter
When we try to analyze and to control a system whose model was obtained only based on input/output data, accuracy is essential in the model. On the other hand, to make the procedure practical, the modeling stage must be computationally efficient. In this regard, this paper presents the application of extended Kalman filter for the parametric adaptation of a fuzzy model.