作物预测中NAR神经网络激活函数与训练算法的比较研究

V. Kaleeswaran, S. Dhamodharavadhani, R. Rathipriya
{"title":"作物预测中NAR神经网络激活函数与训练算法的比较研究","authors":"V. Kaleeswaran, S. Dhamodharavadhani, R. Rathipriya","doi":"10.1109/ICECA49313.2020.9297469","DOIUrl":null,"url":null,"abstract":"The proposed study in this paper provides long-term crop prediction for Tamilnadu, India. Nonlinear Autoregressive (NAR) Neural Network (NN) with different parameter settings has been used to facilitate the correct quality and quantity of crop production. At the core of this study is to compare the effect of training algorithms (such as trainlm, trainbr, trainscg, traincgf, trainbfg, traincgf) and activation functions (such as tansig, elliotsig, logsig and purelin) in the performance of the crop yield forecasting model. This study showed that activation functions elliotsig and tansig with the training algorithm trainbr of NARNN delivered the most promising results based on the smallest error between actual and predicted value compared to the other activation and training functions of NARNN.","PeriodicalId":297285,"journal":{"name":"2020 4th International Conference on Electronics, Communication and Aerospace Technology (ICECA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A Comparative Study of Activation Functions and Training Algorithm of NAR Neural Network for Crop Prediction\",\"authors\":\"V. Kaleeswaran, S. Dhamodharavadhani, R. Rathipriya\",\"doi\":\"10.1109/ICECA49313.2020.9297469\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The proposed study in this paper provides long-term crop prediction for Tamilnadu, India. Nonlinear Autoregressive (NAR) Neural Network (NN) with different parameter settings has been used to facilitate the correct quality and quantity of crop production. At the core of this study is to compare the effect of training algorithms (such as trainlm, trainbr, trainscg, traincgf, trainbfg, traincgf) and activation functions (such as tansig, elliotsig, logsig and purelin) in the performance of the crop yield forecasting model. This study showed that activation functions elliotsig and tansig with the training algorithm trainbr of NARNN delivered the most promising results based on the smallest error between actual and predicted value compared to the other activation and training functions of NARNN.\",\"PeriodicalId\":297285,\"journal\":{\"name\":\"2020 4th International Conference on Electronics, Communication and Aerospace Technology (ICECA)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 4th International Conference on Electronics, Communication and Aerospace Technology (ICECA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICECA49313.2020.9297469\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 4th International Conference on Electronics, Communication and Aerospace Technology (ICECA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICECA49313.2020.9297469","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文提出的研究为印度泰米尔纳德邦提供了长期作物预测。采用不同参数设置的非线性自回归(NAR)神经网络(NN)来促进作物生产的正确质量和数量。本研究的核心是比较训练算法(如trainlm、trainbr、trainscg、traincgf、trainbfg、traincgf)和激活函数(如tansig、elliotsig、logsig和purelin)对作物产量预测模型性能的影响。本研究表明,与NARNN的其他激活和训练函数相比,使用训练算法trainbr的激活函数elliotsig和tansig在实际与预测值之间误差最小的基础上获得了最有希望的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Comparative Study of Activation Functions and Training Algorithm of NAR Neural Network for Crop Prediction
The proposed study in this paper provides long-term crop prediction for Tamilnadu, India. Nonlinear Autoregressive (NAR) Neural Network (NN) with different parameter settings has been used to facilitate the correct quality and quantity of crop production. At the core of this study is to compare the effect of training algorithms (such as trainlm, trainbr, trainscg, traincgf, trainbfg, traincgf) and activation functions (such as tansig, elliotsig, logsig and purelin) in the performance of the crop yield forecasting model. This study showed that activation functions elliotsig and tansig with the training algorithm trainbr of NARNN delivered the most promising results based on the smallest error between actual and predicted value compared to the other activation and training functions of NARNN.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信