Xinting Yang, Chuan Long, Shengyong Ye, Liyang Liu, Xuna Liu, Yuqi Han
{"title":"分布式可再生能源地理约束下主动配电网馈线容量增强的动态规划","authors":"Xinting Yang, Chuan Long, Shengyong Ye, Liyang Liu, Xuna Liu, Yuqi Han","doi":"10.1109/CEECT55960.2022.10030198","DOIUrl":null,"url":null,"abstract":"In order to resolve power curtailment of distributed energy resources (DER) and use clean energy as much as possible, the ability of rooftop photovoltaic (PV) consumption has become a concern for utilities in scenarios of high penetration. This paper addresses the multistage dynamic feeder capacity enhancement planning problem of a distribution system where PV and energy storage systems (ESS) are jointly integrated, and a novel comprehensive planning method based on geographic constraints of distributed renewables is proposed. In this process, load growth and the development of PV and ESS limited by spatial capacity saturation are taken into account. At each planning stage, the operation conditions are divided into several typical day scenarios clustered from the history data. Accordingly, the underlying idea of dynamic programming is used to obtain an optimal solution. The object is to maximize the PV consumption rate. As constraints, the bus voltage, feeder power flow, charge and discharge power of ESS should be maintained within the standard level. Numerical results of an actual distribution system illustrate the effective performance of the proposed approach, and the power supply reliability improvement brought about by planning is also analyzed.","PeriodicalId":187017,"journal":{"name":"2022 4th International Conference on Electrical Engineering and Control Technologies (CEECT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic Planning for Feeder Capacity Enhancement of Active Distribution Network with Geographic Constraints of Distributed Renewables\",\"authors\":\"Xinting Yang, Chuan Long, Shengyong Ye, Liyang Liu, Xuna Liu, Yuqi Han\",\"doi\":\"10.1109/CEECT55960.2022.10030198\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to resolve power curtailment of distributed energy resources (DER) and use clean energy as much as possible, the ability of rooftop photovoltaic (PV) consumption has become a concern for utilities in scenarios of high penetration. This paper addresses the multistage dynamic feeder capacity enhancement planning problem of a distribution system where PV and energy storage systems (ESS) are jointly integrated, and a novel comprehensive planning method based on geographic constraints of distributed renewables is proposed. In this process, load growth and the development of PV and ESS limited by spatial capacity saturation are taken into account. At each planning stage, the operation conditions are divided into several typical day scenarios clustered from the history data. Accordingly, the underlying idea of dynamic programming is used to obtain an optimal solution. The object is to maximize the PV consumption rate. As constraints, the bus voltage, feeder power flow, charge and discharge power of ESS should be maintained within the standard level. Numerical results of an actual distribution system illustrate the effective performance of the proposed approach, and the power supply reliability improvement brought about by planning is also analyzed.\",\"PeriodicalId\":187017,\"journal\":{\"name\":\"2022 4th International Conference on Electrical Engineering and Control Technologies (CEECT)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 4th International Conference on Electrical Engineering and Control Technologies (CEECT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEECT55960.2022.10030198\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 4th International Conference on Electrical Engineering and Control Technologies (CEECT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEECT55960.2022.10030198","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Dynamic Planning for Feeder Capacity Enhancement of Active Distribution Network with Geographic Constraints of Distributed Renewables
In order to resolve power curtailment of distributed energy resources (DER) and use clean energy as much as possible, the ability of rooftop photovoltaic (PV) consumption has become a concern for utilities in scenarios of high penetration. This paper addresses the multistage dynamic feeder capacity enhancement planning problem of a distribution system where PV and energy storage systems (ESS) are jointly integrated, and a novel comprehensive planning method based on geographic constraints of distributed renewables is proposed. In this process, load growth and the development of PV and ESS limited by spatial capacity saturation are taken into account. At each planning stage, the operation conditions are divided into several typical day scenarios clustered from the history data. Accordingly, the underlying idea of dynamic programming is used to obtain an optimal solution. The object is to maximize the PV consumption rate. As constraints, the bus voltage, feeder power flow, charge and discharge power of ESS should be maintained within the standard level. Numerical results of an actual distribution system illustrate the effective performance of the proposed approach, and the power supply reliability improvement brought about by planning is also analyzed.