在非受控环境下支持盲人导航系统的目标识别

M. Marcon, André Roberto Ortoncelli
{"title":"在非受控环境下支持盲人导航系统的目标识别","authors":"M. Marcon, André Roberto Ortoncelli","doi":"10.14210/cotb.v13.p274-281","DOIUrl":null,"url":null,"abstract":"Efficient navigation is a challenge for visually impaired people. Several technologies combine sensors, cameras, or feedback chan-nels to increase the autonomy and mobility of visually impaired people. Still, many existing systems are expensive and complexto a blind person’s needs. This work presents a dataset for indoornavigation purposes with annotated ground-truth representingreal-world situations. We also performed a study on the efficiencyof deep-learning-based approaches on such dataset. These resultsrepresent initial efforts to develop a real-time navigation systemfor visually impaired people in uncontrolled indoor environments.We analyzed the use of video-based object recognition algorithms for the automatic detection of five groups of objects: i) fire extin-guisher; ii) emergency sign; iii) attention sign; iv) internal sign, and v) other. We produced an experimental database with 20 minutesand 6 seconds of videos recorded by a person walking throughthe corridors of the largest building on campus. In addition to thetesting database, other contributions of this work are the study onthe efficiency of five state-of-the-art deep-learning-based models(YOLO-v3, YOLO-v3 tiny, YOLO-v4, YOLO-v4 tiny, and YOLO-v4scaled), achieving results above 82% performance in uncontrolledenvironments, reaching up to 93% with YOLO-v4. It was possible toprocess between 62 and 371 Frames Per Second (FPS) concerning thespeed, being the YOLO-v4 tiny architecture, the fastest one. Codeand dataset available at: https://github.com/ICDI/navigation4blind.","PeriodicalId":375380,"journal":{"name":"Anais do XIII Computer on the Beach - COTB'22","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Object Recognition to Support Navigation Systems for Blind in Uncontrolled Environments\",\"authors\":\"M. Marcon, André Roberto Ortoncelli\",\"doi\":\"10.14210/cotb.v13.p274-281\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Efficient navigation is a challenge for visually impaired people. Several technologies combine sensors, cameras, or feedback chan-nels to increase the autonomy and mobility of visually impaired people. Still, many existing systems are expensive and complexto a blind person’s needs. This work presents a dataset for indoornavigation purposes with annotated ground-truth representingreal-world situations. We also performed a study on the efficiencyof deep-learning-based approaches on such dataset. These resultsrepresent initial efforts to develop a real-time navigation systemfor visually impaired people in uncontrolled indoor environments.We analyzed the use of video-based object recognition algorithms for the automatic detection of five groups of objects: i) fire extin-guisher; ii) emergency sign; iii) attention sign; iv) internal sign, and v) other. We produced an experimental database with 20 minutesand 6 seconds of videos recorded by a person walking throughthe corridors of the largest building on campus. In addition to thetesting database, other contributions of this work are the study onthe efficiency of five state-of-the-art deep-learning-based models(YOLO-v3, YOLO-v3 tiny, YOLO-v4, YOLO-v4 tiny, and YOLO-v4scaled), achieving results above 82% performance in uncontrolledenvironments, reaching up to 93% with YOLO-v4. It was possible toprocess between 62 and 371 Frames Per Second (FPS) concerning thespeed, being the YOLO-v4 tiny architecture, the fastest one. Codeand dataset available at: https://github.com/ICDI/navigation4blind.\",\"PeriodicalId\":375380,\"journal\":{\"name\":\"Anais do XIII Computer on the Beach - COTB'22\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anais do XIII Computer on the Beach - COTB'22\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14210/cotb.v13.p274-281\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do XIII Computer on the Beach - COTB'22","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14210/cotb.v13.p274-281","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

高效导航对视障人士来说是一个挑战。有几种技术结合了传感器、摄像头或反馈通道,以增加视障人士的自主性和移动性。尽管如此,许多现有的系统对于盲人的需求来说是昂贵和复杂的。这项工作提出了一个用于室内导航目的的数据集,其中标注了代表现实世界情况的地面事实。我们还对基于深度学习的方法在此类数据集上的效率进行了研究。这些结果代表了在不受控制的室内环境中为视障人士开发实时导航系统的初步努力。我们分析了使用基于视频的物体识别算法自动检测五组物体:1)灭火器;Ii)应急标志;Iii)注意标志;Iv)内部标志;v)其他标志。我们制作了一个实验数据库,其中包含20分6秒的视频,这些视频是由一个人走过校园最大建筑的走廊时录制的。除了测试数据库之外,这项工作的其他贡献是对五种最先进的基于深度学习的模型(YOLO-v3, YOLO-v3 tiny, YOLO-v4, YOLO-v4 tiny和YOLO-v4缩放)的效率的研究,在不受控制的环境中实现了82%以上的性能,在YOLO-v4中达到93%。在速度方面,它可以处理62到371帧每秒(FPS),作为YOLO-v4的微型架构,是最快的。代码和数据集可在:https://github.com/ICDI/navigation4blind。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Object Recognition to Support Navigation Systems for Blind in Uncontrolled Environments
Efficient navigation is a challenge for visually impaired people. Several technologies combine sensors, cameras, or feedback chan-nels to increase the autonomy and mobility of visually impaired people. Still, many existing systems are expensive and complexto a blind person’s needs. This work presents a dataset for indoornavigation purposes with annotated ground-truth representingreal-world situations. We also performed a study on the efficiencyof deep-learning-based approaches on such dataset. These resultsrepresent initial efforts to develop a real-time navigation systemfor visually impaired people in uncontrolled indoor environments.We analyzed the use of video-based object recognition algorithms for the automatic detection of five groups of objects: i) fire extin-guisher; ii) emergency sign; iii) attention sign; iv) internal sign, and v) other. We produced an experimental database with 20 minutesand 6 seconds of videos recorded by a person walking throughthe corridors of the largest building on campus. In addition to thetesting database, other contributions of this work are the study onthe efficiency of five state-of-the-art deep-learning-based models(YOLO-v3, YOLO-v3 tiny, YOLO-v4, YOLO-v4 tiny, and YOLO-v4scaled), achieving results above 82% performance in uncontrolledenvironments, reaching up to 93% with YOLO-v4. It was possible toprocess between 62 and 371 Frames Per Second (FPS) concerning thespeed, being the YOLO-v4 tiny architecture, the fastest one. Codeand dataset available at: https://github.com/ICDI/navigation4blind.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信