用于气体传感的光束上液体结构

Minh-Dung Nguyen, Kiyoshi Matsumoto, I. Shimoyama
{"title":"用于气体传感的光束上液体结构","authors":"Minh-Dung Nguyen, Kiyoshi Matsumoto, I. Shimoyama","doi":"10.1109/TRANSDUCERS.2017.7994047","DOIUrl":null,"url":null,"abstract":"This paper reports an approach for gas sensing, using liquid-on-beam structure. The key here is a piezoresistive beam was designed at the (lower) interface of liquid and air. Consider gas molecules adhere to the upper surface of liquid, the liquid's surface tension changes, resulting in the deformation of the beam. Since a small amount of gas molecule adhesion to the liquid surface can change the surface tension, this sensing method is supposed to be fast and sensitive. The sensor chip in the experiments had the dimensions of 2.5mm × 2.5mm × 0.3mm. To confirm the measuring principle, the liquid in our proposed device were silicone oil (HIVAC-F4) for acetone vapor gas sensing, since the acetone's molecules can change the silicone oil's surface tension. In the demonstration of CO2 gas sensing, ionic liquid ([EMIM][BF4]) were used regarding the selective ability of CO2 gas absorption","PeriodicalId":174774,"journal":{"name":"2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Liquid-on-beam structure for gas sensing\",\"authors\":\"Minh-Dung Nguyen, Kiyoshi Matsumoto, I. Shimoyama\",\"doi\":\"10.1109/TRANSDUCERS.2017.7994047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper reports an approach for gas sensing, using liquid-on-beam structure. The key here is a piezoresistive beam was designed at the (lower) interface of liquid and air. Consider gas molecules adhere to the upper surface of liquid, the liquid's surface tension changes, resulting in the deformation of the beam. Since a small amount of gas molecule adhesion to the liquid surface can change the surface tension, this sensing method is supposed to be fast and sensitive. The sensor chip in the experiments had the dimensions of 2.5mm × 2.5mm × 0.3mm. To confirm the measuring principle, the liquid in our proposed device were silicone oil (HIVAC-F4) for acetone vapor gas sensing, since the acetone's molecules can change the silicone oil's surface tension. In the demonstration of CO2 gas sensing, ionic liquid ([EMIM][BF4]) were used regarding the selective ability of CO2 gas absorption\",\"PeriodicalId\":174774,\"journal\":{\"name\":\"2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TRANSDUCERS.2017.7994047\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TRANSDUCERS.2017.7994047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文报道了一种利用光束上液体结构进行气体传感的方法。这里的关键是在液体和空气的(下)界面上设计了一个压阻梁。考虑气体分子粘附在液体的上表面,液体的表面张力发生变化,导致梁变形。由于少量气体分子附着在液体表面就可以改变表面张力,因此这种传感方法应该是快速和敏感的。实验中传感器芯片的尺寸为2.5mm × 2.5mm × 0.3mm。为了确认测量原理,我们提出的装置中的液体为用于丙酮蒸气气体传感的硅油(HIVAC-F4),因为丙酮分子可以改变硅油的表面张力。在CO2气体传感演示中,离子液体([EMIM][BF4])对CO2气体的选择性吸收能力被使用
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Liquid-on-beam structure for gas sensing
This paper reports an approach for gas sensing, using liquid-on-beam structure. The key here is a piezoresistive beam was designed at the (lower) interface of liquid and air. Consider gas molecules adhere to the upper surface of liquid, the liquid's surface tension changes, resulting in the deformation of the beam. Since a small amount of gas molecule adhesion to the liquid surface can change the surface tension, this sensing method is supposed to be fast and sensitive. The sensor chip in the experiments had the dimensions of 2.5mm × 2.5mm × 0.3mm. To confirm the measuring principle, the liquid in our proposed device were silicone oil (HIVAC-F4) for acetone vapor gas sensing, since the acetone's molecules can change the silicone oil's surface tension. In the demonstration of CO2 gas sensing, ionic liquid ([EMIM][BF4]) were used regarding the selective ability of CO2 gas absorption
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信