无监督学习训练集时神经网络噪声滤波的训练方法

M. M. Luaces
{"title":"无监督学习训练集时神经网络噪声滤波的训练方法","authors":"M. M. Luaces","doi":"10.1109/CIMSA.2006.250755","DOIUrl":null,"url":null,"abstract":"Noise filtering is considered one of the main applications of neural networks due to its importance in a wide range of scientific and technological areas. The standard methodology needs to obtain first an accurate measure of the desired signal, which is a must in supervised learning. Nevertheless, in some areas these data sets are rarely available, nor can be determined noise function although its distribution is usually known. In this paper, we propose a training methodology combining data simulation, modular neural networks and an interval-splitting strategy for noise-filtering where training data sets are not necessary. Method is explained step by step, and finally results are presented and conclusions done","PeriodicalId":431033,"journal":{"name":"2006 IEEE International Conference on Computational Intelligence for Measurement Systems and Applications","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Training Methodology for Neural Networks Noise-Filtering when no Training Sets are available for Supervised Learning\",\"authors\":\"M. M. Luaces\",\"doi\":\"10.1109/CIMSA.2006.250755\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Noise filtering is considered one of the main applications of neural networks due to its importance in a wide range of scientific and technological areas. The standard methodology needs to obtain first an accurate measure of the desired signal, which is a must in supervised learning. Nevertheless, in some areas these data sets are rarely available, nor can be determined noise function although its distribution is usually known. In this paper, we propose a training methodology combining data simulation, modular neural networks and an interval-splitting strategy for noise-filtering where training data sets are not necessary. Method is explained step by step, and finally results are presented and conclusions done\",\"PeriodicalId\":431033,\"journal\":{\"name\":\"2006 IEEE International Conference on Computational Intelligence for Measurement Systems and Applications\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 IEEE International Conference on Computational Intelligence for Measurement Systems and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIMSA.2006.250755\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE International Conference on Computational Intelligence for Measurement Systems and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIMSA.2006.250755","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

噪声滤波被认为是神经网络的主要应用之一,因为它在广泛的科学和技术领域的重要性。标准方法需要首先获得期望信号的精确度量,这在监督学习中是必须的。然而,在某些地区,这些数据集很少可用,也无法确定噪声函数,尽管它的分布通常是已知的。在本文中,我们提出了一种结合数据模拟、模块化神经网络和间隔分割策略的训练方法,用于不需要训练数据集的噪声滤波。逐步对方法进行说明,最后给出结果并得出结论
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Training Methodology for Neural Networks Noise-Filtering when no Training Sets are available for Supervised Learning
Noise filtering is considered one of the main applications of neural networks due to its importance in a wide range of scientific and technological areas. The standard methodology needs to obtain first an accurate measure of the desired signal, which is a must in supervised learning. Nevertheless, in some areas these data sets are rarely available, nor can be determined noise function although its distribution is usually known. In this paper, we propose a training methodology combining data simulation, modular neural networks and an interval-splitting strategy for noise-filtering where training data sets are not necessary. Method is explained step by step, and finally results are presented and conclusions done
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信