{"title":"无监督学习训练集时神经网络噪声滤波的训练方法","authors":"M. M. Luaces","doi":"10.1109/CIMSA.2006.250755","DOIUrl":null,"url":null,"abstract":"Noise filtering is considered one of the main applications of neural networks due to its importance in a wide range of scientific and technological areas. The standard methodology needs to obtain first an accurate measure of the desired signal, which is a must in supervised learning. Nevertheless, in some areas these data sets are rarely available, nor can be determined noise function although its distribution is usually known. In this paper, we propose a training methodology combining data simulation, modular neural networks and an interval-splitting strategy for noise-filtering where training data sets are not necessary. Method is explained step by step, and finally results are presented and conclusions done","PeriodicalId":431033,"journal":{"name":"2006 IEEE International Conference on Computational Intelligence for Measurement Systems and Applications","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Training Methodology for Neural Networks Noise-Filtering when no Training Sets are available for Supervised Learning\",\"authors\":\"M. M. Luaces\",\"doi\":\"10.1109/CIMSA.2006.250755\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Noise filtering is considered one of the main applications of neural networks due to its importance in a wide range of scientific and technological areas. The standard methodology needs to obtain first an accurate measure of the desired signal, which is a must in supervised learning. Nevertheless, in some areas these data sets are rarely available, nor can be determined noise function although its distribution is usually known. In this paper, we propose a training methodology combining data simulation, modular neural networks and an interval-splitting strategy for noise-filtering where training data sets are not necessary. Method is explained step by step, and finally results are presented and conclusions done\",\"PeriodicalId\":431033,\"journal\":{\"name\":\"2006 IEEE International Conference on Computational Intelligence for Measurement Systems and Applications\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 IEEE International Conference on Computational Intelligence for Measurement Systems and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIMSA.2006.250755\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE International Conference on Computational Intelligence for Measurement Systems and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIMSA.2006.250755","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Training Methodology for Neural Networks Noise-Filtering when no Training Sets are available for Supervised Learning
Noise filtering is considered one of the main applications of neural networks due to its importance in a wide range of scientific and technological areas. The standard methodology needs to obtain first an accurate measure of the desired signal, which is a must in supervised learning. Nevertheless, in some areas these data sets are rarely available, nor can be determined noise function although its distribution is usually known. In this paper, we propose a training methodology combining data simulation, modular neural networks and an interval-splitting strategy for noise-filtering where training data sets are not necessary. Method is explained step by step, and finally results are presented and conclusions done