Instytut Fizjologii, Patologii Słuchu, Badań Przesiewowych, Zakład Otoneurologii, Uniwersytet Warszawski, Wydział Biologii, Warszawski Uniwersytet Medyczny, Wydział Lekarski, Rehabilitacji Kardiologicznej, Instytut Narządów Zmysłów, Kajetany
{"title":"Zastosowanie sztucznej inteligencji w diagnostyce otoneurologicznej – przegląd wybranych publikacji","authors":"Instytut Fizjologii, Patologii Słuchu, Badań Przesiewowych, Zakład Otoneurologii, Uniwersytet Warszawski, Wydział Biologii, Warszawski Uniwersytet Medyczny, Wydział Lekarski, Rehabilitacji Kardiologicznej, Instytut Narządów Zmysłów, Kajetany","doi":"10.17431/10.1.1","DOIUrl":null,"url":null,"abstract":"Introduction : Modern technologies, i.e. artificial intelligence (AI), are rapidly becoming an element supporting the assessment of the diagnosis of vestibular dysfunction. According to the researchers, artificial intelligence quickly analyzes large amounts of data through algorithms making the conclusions detailed and precise. Material and methods: The selected review includes groundbreaking publications from a database such as PubMed, Science Direct and Web of Science in 2015–2021, related to the use of machine learning in the diagnostic process of the most popular vestibular disorders. Conclusions: From a clinical point of view, due to numerous factors that influence the feeling of dizziness and maintaining pos-ture, it is not yet possible to apply artificial intelligence to the self-assessment of vestibular functions. The study indicates that the results of objective diagnostic tests analyzed by machine learning and the ENT may become an important element of clinical practice.","PeriodicalId":214555,"journal":{"name":"Nowa Audiofonologia","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nowa Audiofonologia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17431/10.1.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

现代技术,即人工智能(AI),正迅速成为支持前庭功能障碍诊断评估的一个因素。据研究人员称,人工智能通过算法快速分析大量数据,使结论详细而精确。材料和方法:选定的综述包括2015-2021年来自PubMed、Science Direct和Web of Science等数据库的突破性出版物,这些出版物与机器学习在最流行的前庭疾病诊断过程中的使用有关。结论:从临床角度来看,由于影响头晕感觉和保持体位的因素众多,目前尚不可能将人工智能应用于前庭功能的自我评估。该研究表明,通过机器学习和耳鼻喉科分析客观诊断测试的结果可能成为临床实践的重要组成部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Zastosowanie sztucznej inteligencji w diagnostyce otoneurologicznej – przegląd wybranych publikacji
Introduction : Modern technologies, i.e. artificial intelligence (AI), are rapidly becoming an element supporting the assessment of the diagnosis of vestibular dysfunction. According to the researchers, artificial intelligence quickly analyzes large amounts of data through algorithms making the conclusions detailed and precise. Material and methods: The selected review includes groundbreaking publications from a database such as PubMed, Science Direct and Web of Science in 2015–2021, related to the use of machine learning in the diagnostic process of the most popular vestibular disorders. Conclusions: From a clinical point of view, due to numerous factors that influence the feeling of dizziness and maintaining pos-ture, it is not yet possible to apply artificial intelligence to the self-assessment of vestibular functions. The study indicates that the results of objective diagnostic tests analyzed by machine learning and the ENT may become an important element of clinical practice.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信