V. Chan, D. Lea, M. Bergendahl, G. Karve, T. Levin, C. Yeung, D. Guo
{"title":"环形振荡器良率学习方法用于CMOS技术研究","authors":"V. Chan, D. Lea, M. Bergendahl, G. Karve, T. Levin, C. Yeung, D. Guo","doi":"10.1109/ASMC.2018.8373160","DOIUrl":null,"url":null,"abstract":"We detail the use of ring oscillators (ROs) for yield learning during the research phase of a CMOS technology generation. Failing circuits are located and classified based on electrical analysis of ROs and FETs (Field Effect Transistor) wired out from RO environments.","PeriodicalId":349004,"journal":{"name":"2018 29th Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Ring oscillator yield learning methodologies for CMOS technology research\",\"authors\":\"V. Chan, D. Lea, M. Bergendahl, G. Karve, T. Levin, C. Yeung, D. Guo\",\"doi\":\"10.1109/ASMC.2018.8373160\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We detail the use of ring oscillators (ROs) for yield learning during the research phase of a CMOS technology generation. Failing circuits are located and classified based on electrical analysis of ROs and FETs (Field Effect Transistor) wired out from RO environments.\",\"PeriodicalId\":349004,\"journal\":{\"name\":\"2018 29th Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 29th Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASMC.2018.8373160\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 29th Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASMC.2018.8373160","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Ring oscillator yield learning methodologies for CMOS technology research
We detail the use of ring oscillators (ROs) for yield learning during the research phase of a CMOS technology generation. Failing circuits are located and classified based on electrical analysis of ROs and FETs (Field Effect Transistor) wired out from RO environments.