子空间成像压缩感知

Balsam Dakhil, Yuan F. Zheng, R. Ewing
{"title":"子空间成像压缩感知","authors":"Balsam Dakhil, Yuan F. Zheng, R. Ewing","doi":"10.1109/NAECON.2014.7045845","DOIUrl":null,"url":null,"abstract":"A new compressed image sensing approach is presented. The approach departs from conventional sensing mechanism which seeks incoherency between the sensing and representation vectors. The subspace where most energy of the image lies in is first identified (estimated). Sensing vectors are then selected in the subspace. In doing so, base vectors of discrete cosine transform are used as representation vectors, and low-frequency members of the base vectors are considered to form the subspace. Of those selected base vectors some are used as sensing vectors which are phase shifted to enhance incoherency. Experimental results prove that the new approach is significantly better than random sensing as previously used for compressed sensing.","PeriodicalId":318539,"journal":{"name":"NAECON 2014 - IEEE National Aerospace and Electronics Conference","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Subspace imaging compressive sensing\",\"authors\":\"Balsam Dakhil, Yuan F. Zheng, R. Ewing\",\"doi\":\"10.1109/NAECON.2014.7045845\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new compressed image sensing approach is presented. The approach departs from conventional sensing mechanism which seeks incoherency between the sensing and representation vectors. The subspace where most energy of the image lies in is first identified (estimated). Sensing vectors are then selected in the subspace. In doing so, base vectors of discrete cosine transform are used as representation vectors, and low-frequency members of the base vectors are considered to form the subspace. Of those selected base vectors some are used as sensing vectors which are phase shifted to enhance incoherency. Experimental results prove that the new approach is significantly better than random sensing as previously used for compressed sensing.\",\"PeriodicalId\":318539,\"journal\":{\"name\":\"NAECON 2014 - IEEE National Aerospace and Electronics Conference\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NAECON 2014 - IEEE National Aerospace and Electronics Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NAECON.2014.7045845\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NAECON 2014 - IEEE National Aerospace and Electronics Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAECON.2014.7045845","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种新的压缩图像感知方法。该方法与传统的感知机制不同,传统的感知机制寻求感知向量和表示向量之间的不一致性。首先识别(估计)图像能量最大的子空间。然后在子空间中选择传感向量。在此过程中,使用离散余弦变换的基向量作为表示向量,并考虑基向量的低频成员来形成子空间。在所选择的基矢量中,有一部分用作感测矢量,通过相移来增强非相干性。实验结果表明,该方法在压缩感知中明显优于随机感知。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Subspace imaging compressive sensing
A new compressed image sensing approach is presented. The approach departs from conventional sensing mechanism which seeks incoherency between the sensing and representation vectors. The subspace where most energy of the image lies in is first identified (estimated). Sensing vectors are then selected in the subspace. In doing so, base vectors of discrete cosine transform are used as representation vectors, and low-frequency members of the base vectors are considered to form the subspace. Of those selected base vectors some are used as sensing vectors which are phase shifted to enhance incoherency. Experimental results prove that the new approach is significantly better than random sensing as previously used for compressed sensing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信