利用相关矩阵、随机森林和排列特征重要性方法检测心脏病风险

Sude Pehlivan, Y. Isler
{"title":"利用相关矩阵、随机森林和排列特征重要性方法检测心脏病风险","authors":"Sude Pehlivan, Y. Isler","doi":"10.54856/jiswa.202005108","DOIUrl":null,"url":null,"abstract":"Surface EEG measurements that can be performed in hospitals and laboratories have reached a wearable and portable level with the development of today's technologies. Artificial intelligence-assisted brain-computer interface (BCI) systems play an important role in individuals with disabilities to process EEG signals and interact with the outside world. In particular, the research is becoming widespread to meet the basic needs of individuals in need of home care with an increasing population. In this study, it is aimed to design the BCI system that will detect the hunger and satiety status of the people on the computer platform through EEG measurements. In this context, a database was created by recording EEG signals with eyes open and eyes closed by 20 healthy participants in the first stage of the study. The noise of the EEG signal is eliminated by using a low pass, high pass, and notch filters. In the classification, using Wavelet Packet Transform (WPT) with Coiflet 1 and Daubechies 4 wavelets, 77.50% accuracy was achieved in eyes closed measurement, and 81% in eyes open measurement.","PeriodicalId":112412,"journal":{"name":"Journal of Intelligent Systems with Applications","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Detection of Heart Disease Risk Utilizing Correlation Matrix, Random Forest and Permutation Feature Importance Approaches\",\"authors\":\"Sude Pehlivan, Y. Isler\",\"doi\":\"10.54856/jiswa.202005108\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Surface EEG measurements that can be performed in hospitals and laboratories have reached a wearable and portable level with the development of today's technologies. Artificial intelligence-assisted brain-computer interface (BCI) systems play an important role in individuals with disabilities to process EEG signals and interact with the outside world. In particular, the research is becoming widespread to meet the basic needs of individuals in need of home care with an increasing population. In this study, it is aimed to design the BCI system that will detect the hunger and satiety status of the people on the computer platform through EEG measurements. In this context, a database was created by recording EEG signals with eyes open and eyes closed by 20 healthy participants in the first stage of the study. The noise of the EEG signal is eliminated by using a low pass, high pass, and notch filters. In the classification, using Wavelet Packet Transform (WPT) with Coiflet 1 and Daubechies 4 wavelets, 77.50% accuracy was achieved in eyes closed measurement, and 81% in eyes open measurement.\",\"PeriodicalId\":112412,\"journal\":{\"name\":\"Journal of Intelligent Systems with Applications\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Intelligent Systems with Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.54856/jiswa.202005108\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent Systems with Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54856/jiswa.202005108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

随着当今技术的发展,可以在医院和实验室进行的表面脑电图测量已达到可穿戴和便携式水平。人工智能辅助脑机接口(BCI)系统在残障个体处理脑电信号和与外界互动中发挥着重要作用。特别是,随着人口的增加,这项研究正变得越来越广泛,以满足需要家庭护理的个人的基本需求。本研究旨在设计脑机接口系统,通过脑电测量在计算机平台上检测人的饥饿和饱腹状态。在此背景下,在研究的第一阶段,通过记录20名健康参与者睁眼和闭眼时的脑电图信号,建立了一个数据库。采用低通、高通和陷波滤波器消除脑电信号中的噪声。在分类中,采用Coiflet 1和Daubechies 4小波的小波包变换(WPT),闭眼和睁眼的准确率分别达到77.50%和81%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Detection of Heart Disease Risk Utilizing Correlation Matrix, Random Forest and Permutation Feature Importance Approaches
Surface EEG measurements that can be performed in hospitals and laboratories have reached a wearable and portable level with the development of today's technologies. Artificial intelligence-assisted brain-computer interface (BCI) systems play an important role in individuals with disabilities to process EEG signals and interact with the outside world. In particular, the research is becoming widespread to meet the basic needs of individuals in need of home care with an increasing population. In this study, it is aimed to design the BCI system that will detect the hunger and satiety status of the people on the computer platform through EEG measurements. In this context, a database was created by recording EEG signals with eyes open and eyes closed by 20 healthy participants in the first stage of the study. The noise of the EEG signal is eliminated by using a low pass, high pass, and notch filters. In the classification, using Wavelet Packet Transform (WPT) with Coiflet 1 and Daubechies 4 wavelets, 77.50% accuracy was achieved in eyes closed measurement, and 81% in eyes open measurement.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信