基于视觉的人跟踪慢速目标定位框架

Wozhou He, Yaodong Zhang, Jian Yuan
{"title":"基于视觉的人跟踪慢速目标定位框架","authors":"Wozhou He, Yaodong Zhang, Jian Yuan","doi":"10.1145/3384613.3384632","DOIUrl":null,"url":null,"abstract":"The person-following technique has a promising prospect in living and industrial applications, but it encounters several practical issues such as scene changes and pose variations, especially when deployed on a mobile robot with limited computing power. In order to address the challenges in the person-following scenario, this study formulates the visual target-positioning procedure and proposes a Slow-fast Target-Positioning Framework (STPF) to provide robust target positions in real time. Within this framework, the fast branch enables the real-time capability, while the slow branch corrects the cumulative error and improves the robustness. A dataset is collected and setup to evaluate the impact of STPF on the performance of long-term person-following. Extensive experiments demonstrate that STPF reduces 75% interruptions compared to the KCF tracker baseline, and is well adapted to the long-term person-following in real scenarios.","PeriodicalId":214098,"journal":{"name":"Proceedings of the 2020 12th International Conference on Computer and Automation Engineering","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Vision-based Slow-Fast Target-Positioning Framework for Person-Following\",\"authors\":\"Wozhou He, Yaodong Zhang, Jian Yuan\",\"doi\":\"10.1145/3384613.3384632\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The person-following technique has a promising prospect in living and industrial applications, but it encounters several practical issues such as scene changes and pose variations, especially when deployed on a mobile robot with limited computing power. In order to address the challenges in the person-following scenario, this study formulates the visual target-positioning procedure and proposes a Slow-fast Target-Positioning Framework (STPF) to provide robust target positions in real time. Within this framework, the fast branch enables the real-time capability, while the slow branch corrects the cumulative error and improves the robustness. A dataset is collected and setup to evaluate the impact of STPF on the performance of long-term person-following. Extensive experiments demonstrate that STPF reduces 75% interruptions compared to the KCF tracker baseline, and is well adapted to the long-term person-following in real scenarios.\",\"PeriodicalId\":214098,\"journal\":{\"name\":\"Proceedings of the 2020 12th International Conference on Computer and Automation Engineering\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2020 12th International Conference on Computer and Automation Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3384613.3384632\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2020 12th International Conference on Computer and Automation Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3384613.3384632","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

人跟随技术在生活和工业应用中具有很好的前景,但它遇到了一些实际问题,如场景变化和姿势变化,特别是当部署在计算能力有限的移动机器人上时。为了解决人跟随场景中的挑战,本研究制定了视觉目标定位程序,并提出了一个慢-快目标定位框架(STPF),以提供实时的鲁棒目标位置。在该框架中,快速分支实现了实时性能,而慢速分支纠正了累积误差并提高了鲁棒性。收集并建立了一个数据集,以评估STPF对长期人员跟踪表现的影响。大量实验表明,与KCF跟踪器基线相比,STPF减少了75%的中断,并且很好地适应了真实场景中的长期人跟踪。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Vision-based Slow-Fast Target-Positioning Framework for Person-Following
The person-following technique has a promising prospect in living and industrial applications, but it encounters several practical issues such as scene changes and pose variations, especially when deployed on a mobile robot with limited computing power. In order to address the challenges in the person-following scenario, this study formulates the visual target-positioning procedure and proposes a Slow-fast Target-Positioning Framework (STPF) to provide robust target positions in real time. Within this framework, the fast branch enables the real-time capability, while the slow branch corrects the cumulative error and improves the robustness. A dataset is collected and setup to evaluate the impact of STPF on the performance of long-term person-following. Extensive experiments demonstrate that STPF reduces 75% interruptions compared to the KCF tracker baseline, and is well adapted to the long-term person-following in real scenarios.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信