T. Akinwande, R. Mactaggart, K. Betz, D. Grider, T. Nohava, J. Nohava, T. Lange, D. Tetzlaff, D. Arch
{"title":"采用自对准栅异质结构场效应管技术的500 MHz 16*16复倍增器","authors":"T. Akinwande, R. Mactaggart, K. Betz, D. Grider, T. Nohava, J. Nohava, T. Lange, D. Tetzlaff, D. Arch","doi":"10.1109/ISSCC.1989.48269","DOIUrl":null,"url":null,"abstract":"The authors report a three-stage pipelined 4500-gate 16*16 complex multiplier with a multiply rate of 500 million products per second, producing a complex product which requires four multiplications and two additions every 8 ns at a power dissipation of 4.0 W. The multiplier uses a modified Booth's algorithm to reduce the number of adders in the multiplier net. The basic building block of the adders and registers is a DCFL NOR gate with a special load structure. The heterostructure active layers were grown by molecular beam epitaxy on 3-in semi-insulating LEC (liquid encapsulated Czochralski) GaAs substrates. The output of bits 1 and 5, operating in the self-test mode, is shown. The circuit was found to perform vector rotations correctly at a clock rate of 560 MHz with a power dissipation of 6.2 W and at 520 MHz with a power dissipation of 4 W. The 520-MHz clock at 4 W corresponds to 96 ps/gate and 0.89 mW/gate because the pipelined stages are limited to 20 gate delays. This performance represents a loaded delay with each gate driving an average fan-out of 2.5 and about 1000 mu m of interconnects at close to minimum spacing.<<ETX>>","PeriodicalId":385838,"journal":{"name":"IEEE International Solid-State Circuits Conference, 1989 ISSCC. Digest of Technical Papers","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A 500 MHz 16*16 complex multiplier using self-aligned gate heterostructure FET technology\",\"authors\":\"T. Akinwande, R. Mactaggart, K. Betz, D. Grider, T. Nohava, J. Nohava, T. Lange, D. Tetzlaff, D. Arch\",\"doi\":\"10.1109/ISSCC.1989.48269\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The authors report a three-stage pipelined 4500-gate 16*16 complex multiplier with a multiply rate of 500 million products per second, producing a complex product which requires four multiplications and two additions every 8 ns at a power dissipation of 4.0 W. The multiplier uses a modified Booth's algorithm to reduce the number of adders in the multiplier net. The basic building block of the adders and registers is a DCFL NOR gate with a special load structure. The heterostructure active layers were grown by molecular beam epitaxy on 3-in semi-insulating LEC (liquid encapsulated Czochralski) GaAs substrates. The output of bits 1 and 5, operating in the self-test mode, is shown. The circuit was found to perform vector rotations correctly at a clock rate of 560 MHz with a power dissipation of 6.2 W and at 520 MHz with a power dissipation of 4 W. The 520-MHz clock at 4 W corresponds to 96 ps/gate and 0.89 mW/gate because the pipelined stages are limited to 20 gate delays. This performance represents a loaded delay with each gate driving an average fan-out of 2.5 and about 1000 mu m of interconnects at close to minimum spacing.<<ETX>>\",\"PeriodicalId\":385838,\"journal\":{\"name\":\"IEEE International Solid-State Circuits Conference, 1989 ISSCC. Digest of Technical Papers\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE International Solid-State Circuits Conference, 1989 ISSCC. Digest of Technical Papers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSCC.1989.48269\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE International Solid-State Circuits Conference, 1989 ISSCC. Digest of Technical Papers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCC.1989.48269","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A 500 MHz 16*16 complex multiplier using self-aligned gate heterostructure FET technology
The authors report a three-stage pipelined 4500-gate 16*16 complex multiplier with a multiply rate of 500 million products per second, producing a complex product which requires four multiplications and two additions every 8 ns at a power dissipation of 4.0 W. The multiplier uses a modified Booth's algorithm to reduce the number of adders in the multiplier net. The basic building block of the adders and registers is a DCFL NOR gate with a special load structure. The heterostructure active layers were grown by molecular beam epitaxy on 3-in semi-insulating LEC (liquid encapsulated Czochralski) GaAs substrates. The output of bits 1 and 5, operating in the self-test mode, is shown. The circuit was found to perform vector rotations correctly at a clock rate of 560 MHz with a power dissipation of 6.2 W and at 520 MHz with a power dissipation of 4 W. The 520-MHz clock at 4 W corresponds to 96 ps/gate and 0.89 mW/gate because the pipelined stages are limited to 20 gate delays. This performance represents a loaded delay with each gate driving an average fan-out of 2.5 and about 1000 mu m of interconnects at close to minimum spacing.<>