内置重新播种串行BIST

Ahmad A. Al-Yamani, E. McCluskey
{"title":"内置重新播种串行BIST","authors":"Ahmad A. Al-Yamani, E. McCluskey","doi":"10.1109/VTEST.2003.1197634","DOIUrl":null,"url":null,"abstract":"Reseeding is used to improve fault coverage in BIST pseudo-random testing. Most of the work done on reseeding is based on storing the seeds in an external tester. Besides its high cost, testing using automatic test equipment (ATE) makes it hard to test the circuit while in the system. In this paper, we present a technique for built-in reseeding. Our technique requires no storage for the seeds. The seeds are encoded in hardware. The seeds we use are deterministic so 100% fault coverage can be achieved. Our technique causes no performance overhead and does not change the original circuit under test. Also, the technique we present is applicable for transition faults as well as single-stuck-at faults. Built-in reseeding is based on expanding every seed to as many ATPG patterns as possible. This is different from many existing reseeding techniques that expand every seed into a single ATPG pattern. This paper presents the built-in reseeding algorithm together with a hardware synthesis algorithm and implementation.","PeriodicalId":292996,"journal":{"name":"Proceedings. 21st VLSI Test Symposium, 2003.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"49","resultStr":"{\"title\":\"Built-in reseeding for serial BIST\",\"authors\":\"Ahmad A. Al-Yamani, E. McCluskey\",\"doi\":\"10.1109/VTEST.2003.1197634\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reseeding is used to improve fault coverage in BIST pseudo-random testing. Most of the work done on reseeding is based on storing the seeds in an external tester. Besides its high cost, testing using automatic test equipment (ATE) makes it hard to test the circuit while in the system. In this paper, we present a technique for built-in reseeding. Our technique requires no storage for the seeds. The seeds are encoded in hardware. The seeds we use are deterministic so 100% fault coverage can be achieved. Our technique causes no performance overhead and does not change the original circuit under test. Also, the technique we present is applicable for transition faults as well as single-stuck-at faults. Built-in reseeding is based on expanding every seed to as many ATPG patterns as possible. This is different from many existing reseeding techniques that expand every seed into a single ATPG pattern. This paper presents the built-in reseeding algorithm together with a hardware synthesis algorithm and implementation.\",\"PeriodicalId\":292996,\"journal\":{\"name\":\"Proceedings. 21st VLSI Test Symposium, 2003.\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-04-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"49\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. 21st VLSI Test Symposium, 2003.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VTEST.2003.1197634\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 21st VLSI Test Symposium, 2003.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VTEST.2003.1197634","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 49

摘要

在BIST伪随机测试中,采用重播技术提高故障覆盖率。重新播种的大部分工作都是基于将种子存储在外部测试器中。除了成本高之外,使用自动测试设备(ATE)进行测试也使得在系统中对电路进行测试变得困难。在本文中,我们提出了一种内置重播技术。我们的技术不需要储存种子。种子被编码在硬件中。我们使用的种子是确定性的,因此可以实现100%的故障覆盖率。我们的技术不会造成性能开销,也不会改变被测的原始电路。同时,该方法也适用于过渡性断层和单卡断层。内置的重新播种是基于将每个种子扩展到尽可能多的ATPG模式。这与许多现有的将每个种子扩展成单个ATPG模式的重新播种技术不同。本文给出了一种内置重播算法,并给出了一种硬件合成算法和实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Built-in reseeding for serial BIST
Reseeding is used to improve fault coverage in BIST pseudo-random testing. Most of the work done on reseeding is based on storing the seeds in an external tester. Besides its high cost, testing using automatic test equipment (ATE) makes it hard to test the circuit while in the system. In this paper, we present a technique for built-in reseeding. Our technique requires no storage for the seeds. The seeds are encoded in hardware. The seeds we use are deterministic so 100% fault coverage can be achieved. Our technique causes no performance overhead and does not change the original circuit under test. Also, the technique we present is applicable for transition faults as well as single-stuck-at faults. Built-in reseeding is based on expanding every seed to as many ATPG patterns as possible. This is different from many existing reseeding techniques that expand every seed into a single ATPG pattern. This paper presents the built-in reseeding algorithm together with a hardware synthesis algorithm and implementation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信