利用时间序列预测的不确定性进行雷达系统频谱共享

S. Sone, Janne J. Lehtomäki, Z. Khan, K. Umebayashi, Zunera Javed
{"title":"利用时间序列预测的不确定性进行雷达系统频谱共享","authors":"S. Sone, Janne J. Lehtomäki, Z. Khan, K. Umebayashi, Zunera Javed","doi":"10.1109/TELFOR56187.2022.9983725","DOIUrl":null,"url":null,"abstract":"Interference prediction with neural networks (NNs) can help in proactive resource management for spectrum sharing in 5.6 GHz radar bands. This can achieve high data rates for secondary users (SUs) of the shared spectrum and enhance the protection of the incumbent radar systems. The recently introduced efficient sharing and radar protection (ESRP) system with interference prediction used NN-based long short-term memory (LSTM) and Monte Carlo (MC) dropout to utilize the uncertainties in the interference from the access point (APs). Due to the random nature of radio propagation, the permissible probability of harmful interference at the radar (εp) for the ESRP system varies depending on the MC dropout and prediction intervals (PIs) which represents the amount of uncertainty captured in the system. In this work, we use a gated recurrent unit (GRU) which is simpler and faster than LSTM for interference prediction. We also investigate how the different MC dropout values can vary the parameter εp and improve the radar protection performance of the ESRP system. The results show that radar protection performance can increase by using GRU and the values of MC dropout play an important role in the ESRP system ensuring better radar protection with a small trade-off for throughput of the SUs which are the APs.","PeriodicalId":277553,"journal":{"name":"2022 30th Telecommunications Forum (TELFOR)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Utilizing Uncertainty of Time Series Prediction in Spectrum Sharing with Radar Systems\",\"authors\":\"S. Sone, Janne J. Lehtomäki, Z. Khan, K. Umebayashi, Zunera Javed\",\"doi\":\"10.1109/TELFOR56187.2022.9983725\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Interference prediction with neural networks (NNs) can help in proactive resource management for spectrum sharing in 5.6 GHz radar bands. This can achieve high data rates for secondary users (SUs) of the shared spectrum and enhance the protection of the incumbent radar systems. The recently introduced efficient sharing and radar protection (ESRP) system with interference prediction used NN-based long short-term memory (LSTM) and Monte Carlo (MC) dropout to utilize the uncertainties in the interference from the access point (APs). Due to the random nature of radio propagation, the permissible probability of harmful interference at the radar (εp) for the ESRP system varies depending on the MC dropout and prediction intervals (PIs) which represents the amount of uncertainty captured in the system. In this work, we use a gated recurrent unit (GRU) which is simpler and faster than LSTM for interference prediction. We also investigate how the different MC dropout values can vary the parameter εp and improve the radar protection performance of the ESRP system. The results show that radar protection performance can increase by using GRU and the values of MC dropout play an important role in the ESRP system ensuring better radar protection with a small trade-off for throughput of the SUs which are the APs.\",\"PeriodicalId\":277553,\"journal\":{\"name\":\"2022 30th Telecommunications Forum (TELFOR)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 30th Telecommunications Forum (TELFOR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TELFOR56187.2022.9983725\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 30th Telecommunications Forum (TELFOR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TELFOR56187.2022.9983725","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基于神经网络的干扰预测有助于5.6 GHz雷达频段频谱共享的主动资源管理。这可以为共享频谱的辅助用户(SUs)实现高数据速率,并增强对现有雷达系统的保护。最近推出的具有干扰预测的高效共享和雷达保护(ESRP)系统使用基于神经网络的长短期记忆(LSTM)和蒙特卡罗(MC) dropout来利用来自接入点(ap)的干扰中的不确定性。由于无线电传播的随机性,ESRP系统在雷达上允许的有害干扰概率(εp)取决于MC差值和预测间隔(pi), pi表示系统中捕获的不确定性的数量。在这项工作中,我们使用门控循环单元(GRU)进行干扰预测,它比LSTM更简单,更快。我们还研究了不同的MC差值如何改变参数εp,从而提高ESRP系统的雷达防护性能。结果表明,使用GRU可以提高雷达防护性能,而MC dropout值在ESRP系统中起着重要作用,确保在较小的ap吞吐量权衡的情况下提供更好的雷达防护。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Utilizing Uncertainty of Time Series Prediction in Spectrum Sharing with Radar Systems
Interference prediction with neural networks (NNs) can help in proactive resource management for spectrum sharing in 5.6 GHz radar bands. This can achieve high data rates for secondary users (SUs) of the shared spectrum and enhance the protection of the incumbent radar systems. The recently introduced efficient sharing and radar protection (ESRP) system with interference prediction used NN-based long short-term memory (LSTM) and Monte Carlo (MC) dropout to utilize the uncertainties in the interference from the access point (APs). Due to the random nature of radio propagation, the permissible probability of harmful interference at the radar (εp) for the ESRP system varies depending on the MC dropout and prediction intervals (PIs) which represents the amount of uncertainty captured in the system. In this work, we use a gated recurrent unit (GRU) which is simpler and faster than LSTM for interference prediction. We also investigate how the different MC dropout values can vary the parameter εp and improve the radar protection performance of the ESRP system. The results show that radar protection performance can increase by using GRU and the values of MC dropout play an important role in the ESRP system ensuring better radar protection with a small trade-off for throughput of the SUs which are the APs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信