Alyssa Pierson, Armin Ataei-Esfahani, I. Paschalidis, M. Schwager
{"title":"在有禁飞区的环境下,多架四旋翼飞行器协同追踪一架躲避机","authors":"Alyssa Pierson, Armin Ataei-Esfahani, I. Paschalidis, M. Schwager","doi":"10.1109/ICRA.2016.7487151","DOIUrl":null,"url":null,"abstract":"We investigate the cooperative pursuit of an evader by a group of quadrotors in an environment with no-fly zones. While the pursuers cannot enter into no-fly zones, the evader may freely move through zones to avoid capture. Once the evader enters a no-fly zone, the pursuers calculate a reachable set of evader positions. Using tools from Voronoi-based coverage control applied to the evader's reachable set, we provide an algorithm that distributes the pursuers around the zone's boundary and minimizes the capture time once the evader leaves the no-fly zone. Robust model predictive control (RMPC) tools are used to control the quadrotors and to ensure that they always remain in free space. We demonstrate the performance of our proposed algorithms through a series of experiments on KMEL Nano+ quadrotors.","PeriodicalId":200117,"journal":{"name":"2016 IEEE International Conference on Robotics and Automation (ICRA)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":"{\"title\":\"Cooperative multi-quadrotor pursuit of an evader in an environment with no-fly zones\",\"authors\":\"Alyssa Pierson, Armin Ataei-Esfahani, I. Paschalidis, M. Schwager\",\"doi\":\"10.1109/ICRA.2016.7487151\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate the cooperative pursuit of an evader by a group of quadrotors in an environment with no-fly zones. While the pursuers cannot enter into no-fly zones, the evader may freely move through zones to avoid capture. Once the evader enters a no-fly zone, the pursuers calculate a reachable set of evader positions. Using tools from Voronoi-based coverage control applied to the evader's reachable set, we provide an algorithm that distributes the pursuers around the zone's boundary and minimizes the capture time once the evader leaves the no-fly zone. Robust model predictive control (RMPC) tools are used to control the quadrotors and to ensure that they always remain in free space. We demonstrate the performance of our proposed algorithms through a series of experiments on KMEL Nano+ quadrotors.\",\"PeriodicalId\":200117,\"journal\":{\"name\":\"2016 IEEE International Conference on Robotics and Automation (ICRA)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Robotics and Automation (ICRA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICRA.2016.7487151\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Robotics and Automation (ICRA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRA.2016.7487151","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Cooperative multi-quadrotor pursuit of an evader in an environment with no-fly zones
We investigate the cooperative pursuit of an evader by a group of quadrotors in an environment with no-fly zones. While the pursuers cannot enter into no-fly zones, the evader may freely move through zones to avoid capture. Once the evader enters a no-fly zone, the pursuers calculate a reachable set of evader positions. Using tools from Voronoi-based coverage control applied to the evader's reachable set, we provide an algorithm that distributes the pursuers around the zone's boundary and minimizes the capture time once the evader leaves the no-fly zone. Robust model predictive control (RMPC) tools are used to control the quadrotors and to ensure that they always remain in free space. We demonstrate the performance of our proposed algorithms through a series of experiments on KMEL Nano+ quadrotors.